3-하이드록시프로피온산은 다른 유용한 물질로 변환될 수 있는 잠재성을 가진 화학물질이며, 이 물질을 생물학적 방법으로 합성하는 방법에 대한 관심이 높아지고 있다. 생물학적 방법으로, 미생물에서 두 가지 효소만을 이용하여 3-하이드록시프로피온산을 합성하는 방법에 대한 연구가 많은 연구팀에서 진행되고 있다. 그 두 가지 효소는 글리세롤을 3-하이드록시프로판알로 변환시키는 글리세롤탈수효소와 3-하이드록시프로판알을 3-하이드록시프로피온산으로 변환시키는 알데하이드탈수소효소이다. 이 연구에서는 Azospirillum brasilense에서 유래한 알파-케토글루타레이트탈수소효소(KGSADH)를 실험실에서 이용할 수 있는 진화방법을 이용하여 개량하고자 한다. 먼저, 알파-케토글루타레이트탈수소효소의 3-하이드록시프로판알 결합공간에서 3-하이드록시프로판알과 결합할 것으로 예측되는 잔기 5개를 스크리닝을 통해 선별했다. 그리고 니코틴아마이드 아데닌 다이뉴클레오타이드(NAD)를 같은 조인자 물질로써 이용하는 다른 알데하이드탈수소효소들과의 서열비교를 통해 5개의 잔기를 선별하였다. 총 10개의 잔기에 돌연변이를 일으켜 유전자 풀을 만들었으며, 선행연구에서 향상된 변화체를 얻을 수 있었다라고 알려진 선별방법을 이 유전자 풀에 적용시켰다. 총 7개의 변화체가 이 방법을 통해 얻어졌으며, 3-하이드록시프로판알과 니코틴아마이드 아데닌 다이뉴클레오티드에 대해 이 변화체들의 효소활성을 측정하였고, 3-하이드록시프로판알에 대해서 1.95 배 그리고 니코틴아마이드 아데닌 다이뉴클레오티드에 대해서 1.14 배 효소활성이 증가한 변화체를 얻을 수 있었다.
Alternative Abstract
3-Hydroxypropionic acid (3-HP) is a versatile chemical that can be converted into other compounds, and production of 3-HP via biological methods has attracted many attentions recently. In particular, a number of research groups have attempted to developed biological processes of recombinant bacterial strains harboring two enzymatic reactions of converting glycerol into 3-HP: dehydration of glycerol to 3-hydroxypropanal (3-HPA) by glycerol dehydratase and oxidation of 3-HPA to 3-HP by aldehyde dehydrogenase (ALDH). In this study, I have applied a laboratory evolution approach to engineer one of aldehyde dehydrogenases used for 3-HP production from glycerol, α-ketoglutaric semialdehyde dehydrogenase (KGSADH) from Azospirillum brasilense. Residues in the binding pocket of aldehyde were investigated by screening libraries for the activity toward 3-HPA, in which each residue expected to interact with aldehyde based on a homology model was randomized. Residues in the NAD+-binding sites were examined through the analysis of complex structures of ALDH and NAD+ and the sequence comparison of the cofactor binding pockets of ALDHs. A library, in which ten residues in the aldehyde- and NAD+-binding sites were randomized, was generated and was applied to a previously reported selection method to find KGSADH variants with improved activities. The seven mutants were obtained but only case of M1, for both 3-HPA and NAD+, had better enzyme efficiencies (kcat/Km) 1.95-fold and 1.14-fold, respectively, the others had better enzyme efficiencies for 3-HPA or NAD+.