One-pot Synthesis of Polystyrene-Polyolefin-Polystyrene Triblock Copolymer using Olefin and Styrene monomers

Alternative Title
One-pot Synthesis of Polystyrene-Polyolefin-Polystyrene Triblock Copolymer using Olefin and Styrene monomers
Author(s)
박승수
Alternative Author(s)
SEUNG SOO PARK
Advisor
이분열
Department
일반대학원 분자과학기술학과
Publisher
The Graduate School, Ajou University
Publication Year
2018-02
Language
eng
Keyword
BlockcopolymerPolyolefinSEBS
Alternative Abstract
Synthesis of polyolefin (PO)-based block copolymers is of immense research interest. In this work, we report a strategy for the construction of polystyrene (PS)-block-PO-block-PS, a useful thermoplastic elastomer, directly from olefin and styrene monomers. Multinuclear zinc species Et[Zn(CH2)6]aZnEt were prepared through successive additions of BH3 and Et2Zn to 1,5-hexadiene. Poly(ethylene-co-propylene) chains were biaxially grown from the −(CH2)6– units in Et[Zn(CH2)6]aZnEt via “coordinative chain transfer polymerization (CCTP)” using the pyridylaminohafnium catalyst. PS chains were subsequently grown in one pot from the generated polymeryl–Zn sites by subsequent introduction of the anionic initiator Me3SiCH2Li·(pmdeta) (pmdeta, pentamethyldiethylenetriamine) and styrene monomers. The fraction of the extracted PS homopolymer grown from the Me3SiCH2 sites was low (homo-PS (g)/total PS (g), 15–22%). The gel permeation chromatography (GPC) curves shifted evidently after styrene polymerization, and change in the molecular weight (ΔMn, 39–56 kDa) was approximately twice the homo-PS Mn (20–23 kDa), in accordance with attachment of the PS chains at both ends of the PO chains. Transmission electron microscopy analysis of the thin films showed segregation of the PS domains in the PO matrix to form spherical or wormlike rippled structures depending on the PS content. The prepared triblock copolymers exhibited elastomeric properties in the cyclic tensile test, similar to the commercial PS-block-poly(ethylene-co-1-butene)-block-PS.
URI
https://dspace.ajou.ac.kr/handle/2018.oak/11591
Fulltext

Appears in Collections:
Graduate School of Ajou University > Department of Molecular Science and Technology > 3. Theses(Master)
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse