요 약
고도의 산업발전과 경제성장에 따라 도시가 과밀화되고 거대화되면서 지하철, 경전철 등 지하 교통수단 상당수가 건설되었고 고층 등 신설구조물 건설을 위한 깊은 심도의 지반굴착이 빈번하게 행해지고 있다. 그러나 하부에 터널이 통과하는 기존구조물에 인접하여 신설구조물을 시공하기 위해 근접 지반을 굴착하는 경우에 흙막이구조물 뿐 아니라 주변지반 및 인접구조물의 안정성을 확보하는 것이 매우 중요하다. 또한 안정성을 확보할 수 있는 확실한 방안이 절실하다.
따라서 본 논문에서는 건물하중을 받는 기존터널에 근접하여 지반을 굴착할 때 기존터널의 안정을 확보하기 위해 흙막이벽체에 선행하중을 가하는 경우에 대해 연구하였다. 흙막이벽체에 선행하중을 가함에 따른 기존터널의 거동을 확인하기 위해 건물하중의 위치가 기존터널 상부에서 흙막이벽체로부터 0m, 1.0D, 2.0D 일때에 흙막이벽체 버팀대에 선행하중을 가한 경우와 가하지 않은 경우에 대해 대형모형실험과 수치해석을 수행하였다.
건물하중을 받는 기존터널(직경D)이 흙막이벽체로부터 1.0D 이격된 근접굴착에 따른 터널의 거동을 규명하기위해 1/10의 축척으로 대형모형실험을 폭(2.0m), 높이(6m), 길이(4.0m) 크기를 가진 대형토조에서 상대밀도가 일정한 습윤상태의 모래를 30cm씩 다짐한 시험지반을 조성하여 수행하였다. 수치해석은 대형모형실험과 같은 조건으로 모형실험 지반의 토질정수를 현장 및 실내시험에서 구하여 수행하였다.
실험결과 기존터널이 예상 주동활동면 안에 있을 경우에는 흙막이벽체의 수평변위가 발생하면 기존터널 천단부에 침하가 증가하였으나 버팀대에 선행하중을 가하여 수평변위와 배면지반의 거동을 억제시키면 기존터널 내공변위가 원형에 가깝게 복원되어 기존터널의 안정성이 확보됨을 알 수 있었다. 반면 기존터널이 예상 주동활동면 밖에 있을 경우에는 흙막이벽체에 수평변위가 발생되더라도 기존터널의 내공변위가 작게 발생되어 선행하중을 가하지 않아도 기존터널의 안정성을 확보할 수 있다는 것을 확인하였다.
결론적으로 건물하중을 받는 기존터널이 예상 주동활동면 안에 있을 경우에는 선행하중을 가하여 안정성을 확보할 수 있었고, 건물하중을 받는 기존터널이 예상 주동활동면 밖에 있을 경우에는 선행하중을 가하지 않아도 안정성을 확보할 수 있다는 것이 확인되었다.
Alternative Abstract
Abstract
As the urban areas were expanded and overpopulated with the industrial development and economic growth, various ways for the underground transportation, such as subway and light rail, have been constructed.
Deep ground excavation adjacent to the existing structures is not seldom in the urban areas, in order to construct the new structures like skyscrapers. When the new building is constructed adjacent to the existing tunnel, which is located under a building, the tunnel is very sensitive to the construction sequences for the new building. In this case, it is very important to secure the stability of the braced wall, the surrounding ground, and adjoined structures. But it is not enough studied yet.
In this study, it was tried to apply the pre-loading on the braced wall in order to secure the stability of the existing tunnel which was already loaded by the building above it, when the adjacent ground would be excavated. To examine the behavior of existing tunnel large-scale model tests and numerical analyses were carried out for the cases, when the pre-loading was applied to the braced wall. And they were also performed for the cases without pre-loading. In the tests, the location of building, the pre-loads on the braced wall, and the loads due to the structures were varied.
In order to study the behavior of the existing tunnel during the ground excavation behind the braced wall, large scale model tests in a scale of 1:10 were carried out in the large test box with dimensions of 2.0m (width), 6m (height), and 4.0m (length), which was filled with wet sand with the natural water content in a constant density. Numerical analyses were conducted under the same conditions as the large scale model tests. Soil parameters of the test ground were determined from the field and the laboratory experiments.
Test results showed that, the crown of the existing tunnel sunk in a large amount when the braced wall was deformed horizontally if the tunnel was existed inside the active failure zone. But if the movement of the rear ground and the horizontal displacement was restrained by the pre-loading on the braced wall, the convergence of the existing tunnel was restored almost to its original form, which could secure the stability of the existing tunnel.
On the contrary, when the existing tunnel was located outside the active failure zone, the stability of the existing tunnel could be secured without pre-loading, because the deformation of the existing tunnel was very small even if the horizontal displacement of braced wall took place.
In conclusion, when the existing tunnel was located inside the expected active failure zone, the stability of the tunnel could be secured by applying pre-loading. But when the existing tunnel was located outside the expected active failure zone, the stability of the tunnel could be secured without pre-loading.