In a grid connected power conversion system, the phase angle information of a grid voltage is very essential for supplying power to the grid since it is used for active and reactive power control. A Phase Locked Loop (PLL) system is used and should be robust because often the actual grid voltages are usually distorted by unexpected harmonics. However, conventional PLL systems have steady state errors when distorted voltages are used as a PLL input. Furthermore, using this distorted phase angle in the power control could reduce the output power quality. In this paper, the grid voltages are separated into fundamental and harmonic components and a virtual phase voltage is generated from the fundamental component using a Full Order Observer (FOO). Two virtual voltages are used as an input for the PLL system so the phase angle errors can be reduced and the output power quality can be improved. The dynamic characteristics of the PLL system are designed using the modeling method to improve the dynamic response and stability of the whole system. The performance of the proposed method has been verified by a comparative analysis to the conventional PLL system. It is concluded the proposed method works well.