1. 2-acetylpyridine 을 KH 를 가지고 탈수소 반응을 하여 potassium enolate 화합물 2 를 얻는다. 이것을 Zr(NEt2)2(THF)2, Ti(NMe2)2Cl2 와 반응시켜 [CH2=C(C5H4N)O-k2N,O]2M(NR2)2 (M = Zr, R = Et, 3; M = Ti, R = Me, 4)을 각각 84, 76 % 로의 수득률로 만들 수 있다. 2-acetylpyridine, (2,6-Me2C6H3)N=C(C5H4N)(CH3) (5) and (2,6-iPr2C6H3)N=C(C5H4N)(CH3) (6) 으로부터 K[(2,6-Me2C6H3)N-C(C5H4N)(=CH2)] (7) and K[(2,6-iPr2C6H3)N-(C5H4N)(=CH2)] (8)을 만들 수 있다. 7 번 화합물을 Zr(NEt2)2(THF)2 ,Ti(NMe2)2Cl2 와 반응시켜 [(2,6-Me2C6H3)NC(C5H4N)(=CH2)-k2N,N]2M(NR2)2 (M = Zr, R = Et, 9; M = Ti, R = Me, 10)을 만들 수 있다. 8 번 화합물을 Zr(NEt2)2(THF)2 와 반응시켜[(2,6-iPr2C6H3)NC(C5H4N)(=CH2)]2Zr(NEt2)2 (11) 을 만들 수 있다.
그러나 Ti(NMe2)2Cl2 와 반응시켜서 리간드가 하나만 붇은 [(2,6-iPrC6H3)NC(C5H4N)(=CH2)]TiCl(NMe2)2 (12) 을 얻었다. 3, 4 번 화합물에 AlMe3 를 첨가한 결과 Zr, Ti 이 Al 로 치환된 [CH2=C(C5H4N)(OAlMe3)-k2N,O]AlMe2 을 얻었다. 12 번 화합물에 AlMe3 를 첨가한 것은 [(2,6-iPr2C6H3)NC(C5H4N)(=CH2)]AlMe2 (14)을 얻었다. 4, 11, 13, 14 화합물의 구조는 xray crystallography 에 의해 확인했다.
2. C1-bridged 2,5-dimethylcylcopentadienyl ansa-titanocene 화합물, [Me(H)C(h5-C5H4)(h5-2,5-Me2C5H2)]TiCl2 (4) 와 [(CH3CH2CH2)(H)C(h5-C5H4)(h5-2,5-Me2C5H2)]TiCl2 (5) 그리고 a dinuclear titanium 화합물, Me2Si[(h5-2,5-Me2C5H2)Ti{O(2,6-iPr2C6H3)}Cl2]2 (7)을 만들었다. 4 번 화합물의 구조는 x-ray crystallography 에 의해 확인 했다. ansa -titanocene complexes 4, 5, 7 그리고 ansazirconocene complexes, [Me(H)C(h5-C5H4)(h5-2,5-Me2C5H2)]ZrCl2 (1), [(Me)(H)C(h5-2,5-Me2C5H2)2]ZrCl2 (2), and [Me2Si(h5-2,5-Me2C5H2)2]ZrCl2 (3)을 MAO 로 활성화 시켜 에틸렌 중합을 하였다. 흥미롭게도 ansa-titanocene complexes 4 와 5 는 ansazirconocene complexes 1, 2 보다 높은 반응성과 분자량(Mw, ~ 800,000)이 큰 고분자를 얻을 수 있었다. Me2Si-bridged complex 3 는 [Me2Si(Me4C5)(NtBu)]TiCl2 (CGC) 보다 같은 조건하에서 15 배 높은 활성을 보였다. 에틸렌/1-헥신의 공중합도 화합물 3, 5 로 연구하였다. 이 두 화합물은 CGC 보다 comonomer 의 침투가 더 좋다.
3. 2-(Dihydroxyboryl)-3-methyl-2-cyclopenten-1-one (1) and 2-(dihydroxyboryl)-3,4-dimethyl-2-cyclopenten-1-one (2)을 만들었다. 2-bromoaniline, 2-bromo-4,6-dimethylaniline, and 2-bromo-4,6-difluoroaniline 와 cyclopentenone 을 Suzuki coupling을 통해 aniline 의 ortho 위치에 2,5-dimethylcyclopentadienyl or 2,3,5-trimethylcyclopentadienyl 을 쉽게 붙일 수 있다. 아미노 그룹을 피바로일 클로라이드로 carboxamide 를 만든 후 Ti(NMe2)4 와 반응시켜 [ortho-C6H2R'2(h5-3-R-2,5-Me2Cp)(NC(O)tBu)]Ti(NMe2)2 (R = H or Me, R' = H, Me, or F)을 만든다. 여기에 SiCl4 를 처리했더니 예상하지 못한 chelate 되지않은 [ortho-C6H2R'2(h5-3-R-2,5-Me3Cp)(N=C(Cl)tBu)]TiCl3 (21, R=H, R'=H; 22, R=Me, R'=H; 23, R=H, R'=Me; 24, R=Me, R'=Me), and chelated oxygen-coordinated dichlorotitanium complexes, [ortho-C6H2F2(h5-3-R-2,5-Me3Cp)(N=C(O)tBu-kO)]TiCl2 (25, R=H; 26, R=Me)을 얻었다. The chelat dimethyltitanium complexes, [ortho-C6H4(h5-3-R-2,5-Me3Cp)(N-C(=O)tBu-k2N,O)]TiMe2 (27, R=H; 28, R=Me)은 Me2TiCl2 을 만든 후 다이 리튬염과 반응시켜 얻었다. 21-23, 25, 27 의 구조는 x-ray crystallography 에 의해 확인했다.
Alternative Abstract
1. Deprotonation of 2-acetylpyridine with KH in THF afford a potassium enolate compound (2) which reacts with Zr(NEt₂)2Cl₂(THF)₂ and Ti(NMe₂)₂2Cl₂ to yield [CH₂=C(C_(5)H₄N)O-κ²N,N,O]M₂(NR₂)₂ (M = Zr, R = Et, 3; M = Ti, R = Me, 4) in 84 % and 76 % yield, respectively. Deprotonation of imines derived from 2-acetylpyridine, (2,6-Me₂C_(6)H₃)N=C(C_(5)H₄N)(CH₃) (5) and (2,6-iPr₂C_(6)H₃)N=C(C_(5)H₄N)(CH₃) (6), affords potassium enamides, K[(2,6-Me₂C_(6)H₃)N-C(C_(5)H₄N)(=CH₂)] (7) and K[(2,6-iPr₂C_(6)H₃)N-(C_(5)H₄N)(=CH₂)] (8). Reactions of the potassium salt 7 with Zr(NEt₂)₂Cl₂(THF)₂ and Ti(NMe₂)₂Cl₂ afford pyridineenamido complexes, [(2,6-Me₂C_(6)H₃)NC(C_(5)H₄N)(=CH₂)-κ²N,N]₂M(NR₂)₂ (M = Zr, R = Et, 9; M = Ti, R = Me, 10). Reaction of 8 with Zr(NEt₂)₂Cl₂(THF)₂ affords [(2,6-iPr₂C_(6)Hc)8NC(C_(5)HcN9)(=CH₂)]₂Zr(NEt₂)₂ (11) but the reaction of 8 with Ti(NMe₂)₂2Cl₂ yields [(2,6-iPrC_(6)H₃)NC(C_(5)H₄N)(=CH₂)]TiCl(NMe2)2 (12). Addition of excess AlMe₃ to 3 or 4 results in transmetallation of Zr or Ti to Al to afford an aluminum enolate complex, [CH₂=C(C_(5)H₄N)(OAlMe₃)-κ²N,O]AlMe₂ (13). Addition of AlMe3 to 12 results in the formation of transmetallated complex, [(2,6-iPr₂C_(6)H₃)NC(C_(5)H₄N)(=CH₂)]AlMe₂ (14) either. Solid structure of 4, 11, 13 and 14 were determined by x-ray crystallography.
2.C1-bridged 2,5-dimethylcylcopentadienyl ansa-titanocene complexes, [Me(H)C(η^(5)-C_(5)H₄)(η^(5)-2,5-Me₂C5H₂)]TiCl (4) and [(CH₃CH₂CH₂)(H)C(η^(5)-C_(5)H₄)(η^(5)-2,5-Me₂C_(5)H₂)]TiCl₂ (5) and a dinuclear titanium complex, Me₂Si[(η^(5)-2,5-Me₂C_(5)H₂)Ti{O(2,6-iPr₂C_(6)H₃)}Cl₂]₂ (7) are prepared. The solid state structure of 4 is determined by X-ray crystallography. Ethylene polymerization reactivities of 4, 5, 7 and structurally related ansa-zirconocene complexes, [Me(H)C(η^(5)-C_(5)H₄)(η^(5)-2,5-Me₂C_(5)H₂)]ZrCl₂ (1), [(Me)(H)C(η^(5)-2,5-Me₂C_(5)H₂)₂]ZrCl₂ (2), and [Me₂Si(η^(5)-2,5-Me₂C_(5)H₂)₂]ZrCl₂ (3) are investigated after activation with MAO. Interestingly, the ansa-titanocene complexes 4 and 5 show much higher activity than the ansa-zirconocene complexes 1 and 2 and the molecular weights of the polymers obtained by the titanocene complexes are significantly higher (Mw, ~ 800,000) than those of polymers obtained by the zirconocene complexes (Mw, below 200,000). The Me2Si-bridged complex 3 shows extremely high activity for the ethylene polymerization and the activity (290×10^(6) g/mol·h) is 15 times higher than that of [Me₂Si(Me₄C_(5))(NtBu)]TiCl₂ (CGC) under the same conditions. Ethylene/1-hexene copolymerization reactivities of 3 and 5 are studied. The complexes are inferior to the CGC in terms of comonomer incorporation ability.
3. 2-(Dihydroxyboryl)-3-methyl-2-cyclopenten-1-one (1) and 2-(dihydroxyboryl)-3,4-dimethyl-2-cyclopenten-1-one (2) are prepared. The Suzuki coupling reaction of the boronic acids with 2-bromoaniline, 2-bromo-4,6-dimethylaniline, and 2-bromo-4,6-difluoroaniline afford the corresponding cyclopentenone compounds from which aniline compounds ortho-substituted with 2,5-dimethylcyclopentadienyl or 2,3,5-trimethylcyclopentadienyl are prepared. After the amino group is transformed to carboxamide by treatment of pivaloyl chloride, Ti(NMe₂)₄ is reacted to afford [ortho-C_(6)H₂R'₂(η^(5)-3-R-2,5-Me₂Cp)(NC(O)tBu)]Ti(NMe₂)₂ (R = H or Me, R' = H, Me, or F). Treatment of SiCl₄ to the bis(dimethylamido)titanium complexes affords unexpected not-chelated trichlorotitanium complexes, [ortho-C_(6)H₂R'₂(η^(5)-3-R-2,5-Me₃Cp)(N=C(Cl)tBu)]TiCl₃ (21, R=H, R'=H; 22, R=Me, R'=H; 23, R=H, R'=Me; 24, R=Me, R'=Me), and chelated oxygen-coordinated dichlorotitanium complexes, [ortho-C_(6)H₂F₂(η^(5)-3-R-2,5-Me₃Cp)(N=C(O)tBu-κO)]TiCl₂ (25, R=H; 26, R=Me). The chelated dimethyltitanium complexes, [ortho-C_(6)H₄(η^(5)-3-R-2,5-Me₃Cp)(N-C(=O)tBu-κ²N,O)]TiMe₂ (27, R=H; 28, R=Me) are prepared by the reaction of the corresponding dilithium salts with in situ generated Me₂TiCl₂. Molecular structures of 21-23, 25, and 27 are determined by X-ray crystallography.