조직 재생을 위한 In situ 가교 젤라틴 기반 하이드로젤
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | 박기동 | - |
dc.contributor.author | Park, Kyung Min | - |
dc.date.accessioned | 2018-11-08T06:11:40Z | - |
dc.date.available | 2018-11-08T06:11:40Z | - |
dc.date.issued | 2012-02 | - |
dc.identifier.other | 12312 | - |
dc.identifier.uri | https://dspace.ajou.ac.kr/handle/2018.oak/2869 | - |
dc.description | 학위논문(박사)아주대학교 일반대학원 :분자과학기술학과,2012. 2 | - |
dc.description.tableofcontents | Abstract i Table of Contents iii List of Figures ix List of Tables xvi Chapter 1. General Introduction 1 1. Biomaterials 2 1.1. Polymeric biomaterials 6 1.2. Biodegradable polymers 7 1.3. Gelatin 10 2. Hydrogels 14 2.1. Enzyme-mediated cross-linkable hydrogels 18 2.1.1. HRP-catalyzed crosslinking systems 21 2.1.2. TGase-catalyzed crosslinking systems 24 2.1.3. Other enzyme-catalyzed crosslinking systems 27 3. Artificial extracellular matrix (aECM) for tissue regenerative medicine 29 3.1. Natural ECMs 31 3.2. Essential components of the aECM 31 3.2.1. Micro- and nano-fibrillar structure 32 3.2.2. Hydrophilic networks 34 3.2.3. Insoluble ligands 34 3.2.4. Binding and release of soluble factors 37 3.2.5. Enzymatic biodegradability for the ECM remodeling 37 4. Overall Objectives 40 5. References 41 Chapter 2. In situ forming hydrogels based on tyramine conjugated 4-arm-PPO-PEO via enzymatic oxidative reaction 49 1. Introduction 50 2. Materials and methods 51 2.1. Materials 51 2.2. Synthesis of Tetronic-succinic anhydride-tyramine (Tet-SA-TA) conjugates 52 2.3. Preparation of hydrogel and gelation rate 53 2.4. Rheological experiment 53 2.5. In vitro degradation behavior and swelling ratio of Tet-SA-TA hydrogels 54 2.6. Morphology of dehydrated Tet-SA-TA hydrogels 54 2.7. In vitro cytotoxicity study 55 3. Results and discussion 55 3.1. Synthesis and characterizations of Tet-SA-TA conjugates 55 3.2. Preparation of the hydrogels and gelation time of the hydrogel 58 3.3. Rheological experiment 61 3.4. In vitro degradation behavior and swelling ratio of Tet-SA-TA hydrogel 64 3.5. Micro-porous structure of lyophilized hydrogels 67 3.6. In vitro cytotoxicity study 70 4. Conclusions 73 5. References 74 Chapter 3. In situ hydrogelation and RGD conjugation of tyramine-conjugated 4-arm-PPO-PEO block copolymer for injectable bio-mimetic scaffolds 77 1. Introduction 78 2. Materials and methods 79 2.1. Materials 79 2.2. Synthesis of tyramine-conjugated 4-arm-PPO-PEO (Tet-TA) 80 2.3. Preparation of in situ RGD-conjugated hydrogels and hydrogel disc 81 2.4. Quantification of RGD amount on the hydrogel surfaces 82 2.5. Distribution of RGD-Y on the hydrogel matrix 82 2.6. Rheological experiment 83 2.7. Swelling ratio measurement 83 2.8. In vitro attachment and proliferation study of MC3T3-E1 83 2.9. Static analysis 84 3. Results and discussion 85 3.1. Synthesis of Tet-TA conjugates 85 3.2. Preparation of in situ forming RGD-Tet-TA hydrogels 87 3.3. RGD density on the hydrogel surfaces 90 3.4. RGD distribution in the hydrogel matrix 92 3.5. Mechanical properties of RGD-Tet-TA hydrogels 94 3.6. Swelling ratio of RGD-Tet-TA hydrogels 96 3.7. In vitro cell proliferation and attachment on the RGD-Tet-TA hydrogel 98 4. Conclusions 101 5. References 102 Chapter 4. In situ cross-linkable gelatin and 4-arm-PPO-PEO hybrid hydrogels via an enzymatic reaction for tissue regenerative medicine 104 1. Introduction 105 2. Materials and methods 107 2.1. Materials 107 2.2. Synthesis of tyramine conjugated 4-arm-PPO-PEO (Tet-TA) 107 2.3. Synthesis of gelatin-hydroxyphenylpropionic acid (GHPA) conjugates 108 2.4. Gelation time measurement and rheological experiment 109 2.5. In vitro proteolytic degradation study 112 2.6. Cytocompatibility of the hybrid hydrogels 112 2.7. In vivo subcutaneous injection of the hybrid hydrogels 113 3. Results and discussion 113 3.1. Synthesis of Tet-TA and GHPA conjugates 113 3.2. In situ cross-linkable hydrogel formation and gelation time 116 3.3. Controllable mechanical properties of the hybrid hydrogels 119 3.4. In vitro proteolytic degradation behavior of the hybrid hydrogels 122 3.5. Cell viability of the hDFBs in the hybrid hydrogel matrices 125 3.6. In vivo subcutaneous injection 127 4. Conclusions 129 5. References 130 Chapter 5. In situ cross-linkable gelatin-poly(ethylene glycol)-tyramine hydrogels via enzyme-mediated reaction for tissue regenerative medicine 133 1. Introduction 134 2. Materials and methods 136 2.1. Materials 136 2.2. Synthesis of gelatin-poly(ethylene glycol)-tyramine (GPT) conjugates 137 2.3. Characterizations of GPT graft copolymer 138 2.4. Hydrogel preparation and gelation time measurement of GPT hydrogel 138 2.5. Rheological experiment 139 2.6. In vitro enzymatic degradation behavior of GPT hydrogel 139 2.7. In vitrotwo-dimensional cell study 139 2.8. In vitro three-dimensional cell study 140 2.9. In vivo subcutaneous injection of the GPT hydrogels 141 3. Results and discussion 141 3.1. Synthesis and characterization of the GPT conjugates 141 3.2. Preparation and gelation time of in situ forming GPT hydrogels 144 3.3. Effect of hydrogen peroxide concentration on mechanical strength 146 3.4. In vitro proteolytic degradation of the GPT hydrogel 148 3.5. In vitro cell attachment and proliferation on/in the hydrogels matrix 151 3.6. Tissue compatibility in vivo 155 4. Conclusions 157 5. References 158 Chapter 6. In situ SVVYGLR peptide conjugation into injectable gelatin-poly(ethylene glycol)-tyramine hydrogel via enzyme-mediated reaction for enhancement of endothelial cell activity and neo-vascularization 161 1. Introduction 162 2. Materials and methods 164 2.1. Materials 164 2.2. Synthesis of gelatin-poly(ethylene glycol)-tyramine (GPT) conjugates 165 2.3. Preparation of in situ SVVYGLR peptide conjugated GPT (SV-GPT) hydrogels 165 2.4. Quantitative analysis of SVVYGLR concentration in the hydrogel matrices 166 2.5. Rheological experiment 166 2.6. In vitro HUVEC culture on the hydrogel matrices 167 2.7. In vivo subcutaneous injection of the hydrogels 168 3. Results and discussion 169 3.1. Synthesis of GPT conjugates 169 3.2. Preparation of in situ cross-linkable SV-GPT hydrogels 172 3.3. Amount of conjugated SVVYGLR concentration in the hydrogel matrices 174 3.4. Mechanical strength of SV-GPT hydrogels 177 3.5. Effect of the conjugated SVVYGLR on HUVEC attachment and proliferation 180 3.6. Neo-vascularization within the SV-GPT hydrogels 185 4. Conclusions 187 5. References 188 Abstract in Korean 190 | - |
dc.language.iso | eng | - |
dc.publisher | The Graduate School, Ajou University | - |
dc.rights | 아주대학교 논문은 저작권에 의해 보호받습니다. | - |
dc.title | 조직 재생을 위한 In situ 가교 젤라틴 기반 하이드로젤 | - |
dc.title.alternative | Kyung Min Park | - |
dc.type | Thesis | - |
dc.contributor.affiliation | 아주대학교 일반대학원 | - |
dc.contributor.alternativeName | Kyung Min Park | - |
dc.contributor.department | 일반대학원 분자과학기술학과 | - |
dc.date.awarded | 2012. 2 | - |
dc.description.degree | Master | - |
dc.identifier.localId | 570283 | - |
dc.identifier.url | http://dcoll.ajou.ac.kr:9080/dcollection/jsp/common/DcLoOrgPer.jsp?sItemId=000000012312 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.