유방암 진단을 위한 SLIC 분할과 딥러닝의 융합

Alternative Title
Integration of SLIC segmentation and deep learning method for breast tumor classification
Author(s)
박진혁
Alternative Author(s)
Jin Hyeok Park
Advisor
선우명훈
Department
일반대학원 전자공학과
Publisher
The Graduate School, Ajou University
Publication Year
2021-08
Language
kor
Keyword
CNNSLIC딥러닝유방조영술
Abstract
본 논문은 의사의 시점을 고려하여 X-ray 이미지 상에서 주변 픽셀에 비해 밝은 영역의 특성을 반영하는 네트워크를 구현한 논문이다. SLIC (Simple Linear Iterative Clustering) 알고리즘을 적용하여 RoI (Region of Interest) 이미지의 지역적인 특징과 원본 X-ray 이미지의 전체적인 특징을 모두 반영한 종양 분류 모델을 고안하였다. 종양의 악성여부를 추정하는 분류 네트워크를 구현하여 RoI 미적용시 정확도 0.925, 적용시 정확도 0.96라는 유의미한 성능 차이를 보여주었다.
Alternative Abstract
This paper implements a deep learning network that reflects the characteristics of a region that is brighter than the surrounding pixels on an X-ray image, considering the point of view of the radiologist. We apply a Simple Linear Iterative Clustering (SLIC) algorithm to devise a tumor classification model that reflects both the local features of the Region of Interest (RoI) image and the global features of the original image. We implemented a classification network to estimate the malignancy of the tumor which showed a significant performance difference of accuracy 0.96 on application of ROI, accuracy 0.925 without ROI.
URI
https://dspace.ajou.ac.kr/handle/2018.oak/20509
Fulltext

Appears in Collections:
Graduate School of Ajou University > Department of Electronic Engineering > 3. Theses(Master)
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse