Development and optimization of a biosensor platform based on metamaterials

Alternative Title
Development and optimization of a biosensor platform based on metamaterials
Author(s)
박세준
Alternative Author(s)
Sae June Park
Advisor
안영환
Department
일반대학원 에너지시스템학과
Publisher
The Graduate School, Ajou University
Publication Year
2018-02
Language
eng
Keyword
MetamaterialsTerahertzBiosensor
Alternative Abstract
Microorganisms such as fungi and bacteria cause many human diseases and therefore rapid and accurate identification of these substances is essential for effective treatment and prevention of further infections. In particular, contemporary microbial detection technique is limited by the low detection speed which usually extends over a couple of days. In this thesis, we develop and optimize a biosensor platform based on metamaterials that are capable of high-speed on-site detection of target materials in both ambient and aqueous environments. We begin with the first demonstration of microorganisms using metamaterials. We were able to detect extremely small amounts of the microorganisms because their sizes are on the same scale as the micro-gaps of the terahertz metamaterials. The resonant frequency shift of the metamaterials was investigated in terms of the number density and the dielectric constants of the microorganisms, which was successfully interpreted by the change in the effective dielectric constant of a gap area. Furthermore, we demonstrate dielectric substrate effects on the resonance shift of terahertz metamaterials with various metal thicknesses by using finite-difference time-domain simulations. We found a small red shift in the metamaterial resonance with increasing metal thickness for the free-standing case. Conversely, when the metamaterial pattern was supported by a substrate with a high dielectric constant, the resonant frequency exhibited a large blue shift because the relative contribution of the substrate’s refractive index to the resonant frequency decreased drastically as we increased the metal thickness. We determined the substrate’s refractive index, 1.26, at which the metamaterial resonance was independent of the metal thickness. We extracted the effective refractive index as a function of the substrate’s refractive index explicitly, which was noticeably different for different film thicknesses. We demonstrated sensitive detection of individual yeast cells and yeast films by using slot antenna arrays operating in the terahertz frequency range. Microorganisms located at the slot area cause a shift in the resonant frequency of the THz transmission. The shift was investigated as a function of the surface number density for a set of devices fabricated on different substrates. In particular, sensors fabricated on a substrate with relatively low permittivity demonstrate higher sensitivity. The frequency shift decreases with increasing slot antenna width for a fixed coverage of yeast film, indicating a field enhancement effect. Furthermore, the vertical range of the effective sensing volume has been studied by varying the thickness of the yeast film. The resonant frequency shift saturates at 3.5 μm for a slot width of 2 μm. The shape dependence of target materials on the sensitivity of terahertz metamaterial sensors was also investigated. Polystyrene microbeads with a known dielectric constant and spherical, ovular, lens-shaped, and star-shaped structures were studied. The resonant frequency showed a clear red-shift after the deposition of low-density microbeads owing to the change in the dielectric environment in the gap area of the metamaterials. The shift in the resonant frequency increased linearly with the surface density, saturating at 60–80 GHz when the gap area was full of microbeads. More importantly, the resonant frequency shift was higher for non-spherical microbeads, such as the star-shaped microbeads. Therefore, the shape of the individual target material was a crucial factor in determining metamaterial sensor sensitivity. We studied experimentally and theoretically the vertical range of the confined electric field in the gap area of metamaterials, which was analyzed for various gap widths using terahertz time-domain spectroscopy. We measured the resonant frequency as a function of the thickness of poly(methyl methacrylate) in the range 0 to 3.2 μm to quantify the effective detection volumes. We found that the effective vertical range of the metamaterial is determined by the size of the gap width. The vertical range was found to decrease as the gap width of the metamaterial decreases, whereas the sensitivity is enhanced as the gap width decreases due to the highly concentrated electric field. Finally, a numerical expression was obtained for the vertical range as a function of the gap width. This expression is expected to be very useful for optimizing the sensing efficiency. We also demonstrate that terahertz metamaterials are powerful tools for determination of dielectric constants of polymer films and polar liquids. As we deposit a dielectric film on a metamaterial, the resonant frequency shifts, but saturates at a specific thickness due to the limited sensing volume of the metamaterial. From the saturated value, we can extract the dielectric constants of various polymers that are transparent to the THz frequency range. In addition, we fabricated a microfluidic channel that contains the metamaterials to address the real dielectric constants for a polar liquid solution. This was possible due to an extremely confined electric field near the gap area of the metamaterials, enabling us to employ very thin liquid layers. We found that the resonance shifts do not depend critically on the imaginary dielectric constants, proving that our approach can be universal in terms of various materials, including absorptive materials. As an example, the dielectric constants of sodium chloride and potassium chloride solutions have been determined with various concentrations. Finally, we demonstrate highly sensitive detection of viruses using terahertz split-ring resonators with various capacitive gap widths. Two types of viruses, with sizes ranging from 60 nm (PRD1) to 30 nm (MS2), were detected at low densities on the metamaterial surface. The dielectric constants of the virus layers in the THz frequency range were first measured using thick films, and the large values found identified them as efficient target substances for dielectric sensing. We observed the resonance-frequency shift of the THz metamaterial following deposition of the viruses on the surface at low-density. The resonance shift was higher for the MS2 virus, which has a relatively large dielectric constant. The frequency shift increases with surface density until saturation and the sensitivity is then obtained from the initial slope. Significantly, the sensitivity increases by about 13 times as the gap width in the metamaterials is decreased from 3 µm to 200 nm. This results from a combination of size-related factors, leading to field enhancement accompanying strong field localization.
URI
https://dspace.ajou.ac.kr/handle/2018.oak/13873
Fulltext

Appears in Collections:
Graduate School of Ajou University > Department of Energy Systems > 4. Theses(Ph.D)
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse