실시간 인간 활동 데이터 분석 알고리즘 및 활동측정 시스템 설계

DC Field Value Language
dc.contributor.advisor조위덕-
dc.contributor.author김윤경-
dc.date.accessioned2018-11-08T07:59:16Z-
dc.date.available2018-11-08T07:59:16Z-
dc.date.issued2012-02-
dc.identifier.other12119-
dc.identifier.urihttps://dspace.ajou.ac.kr/handle/2018.oak/9447-
dc.description학위논문(박사)아주대학교 일반대학원 :전자공학과,2012. 2-
dc.description.abstract사람의 일상생활 중 가장 빈번하게 이루어지는 신체적 활동 중의 하나는 보행이며 자주 일어나는 동작이다. 가속도 센서를 이용하여 걸음 수를 검출하고 획득된 데이터는 사용자 정보(성별, 나이, 키, 몸무게 등)와 결합되어 활동량을 산출하거나 생활 패턴을 알아내는 등 다양한 행동검출을 위한 정보로 사용된다. 가속도 센서를 사람의 보행 및 동작 패턴 측정에 사용할 때에는 사람 간의 보행 동작이 다르기 때문에 센서로부터 얻은 출력 데이터도 다르게 표현될 수 있다. 같은 동작이라 해도 센서의 동작 특성 및 노이즈, 보행 특성, 신체의 착용위치 등이 다를 경우 다른 결과를 얻게 된다. 또한 하나의 알고리즘으로 모든 경우의 걸음 동작에 대한 처리에는 한계가 있으므로 다양한 상황에서도 검출할 수 있도록 하는 알고리즘이 요구된다. 따라서 본 논문에서는 3축 가속도 센서를 이용하여 사람이 보행 시 발생하는 센서 데이터를 획득하여 실시간 걸음 수 검출 및 활동량 추정이 가능한 알고리즘을 제안하여 Actical의 검출 성능과 비교하였다. 가속도 센서를 탑재한 웨어러블 디바이스(활동량 측정기)를 개발하여 피 실험자 59명을 대상으로 트레드밀에서 호흡가스 대사분석기(K4B2), Actical, 활동량 측정기를 착용 후 느리게 걷기, 걷기, 빠르게 걷기, 천천히 뛰기, 뛰기, 빠르게 뛰기 등 6단계의 다양한 걸음 속도에서 테스트를 진행하여 데이터를 획득하였다. 3축 가속도 센서의 X, Y, Z축 출력 값을 하나의 대표 값으로 처리하는 신호벡터크기(Signal Vector Magnitude :SVM)를 사용하였다. 또한 느린 걸음과 빠르게 뛰기의 동작에서도 걸음 수 검출이 가능하도록 걸음 데이터의 특정 값을 추출하여 임계값을 지속적으로 갱신하는 적응적인 임계값 알고리즘(Adaptive Threshold Algorithm :ATA)을 제안하였다. 그리고 임계범위 내에서 노이즈로 처리된 걸음을 찾기 위해 네 번의 걸음 데이터를 참조하여 걸음 패턴의 평균 임계값을 구하여 걸음 수를 카운트하는 휴리스틱 알고리즘(Heuristic Algorithm :HA)을 제안하고 또한 분당 걸음 속도가 평균 이하로 느린 걸음 동작에서도 검출이 가능하도록 적응적인 잠금 구간 알고리즘(Adaptive Locking Period Algorithm :ALPA)을 제안하여 위 세 가지의 알고리즘이 병행처리 되도록 하였다. 본 논문의 결과에서 하나의 알고리즘을 사용할 경우보다 다양한 알고리즘을 제안하고 적용함으로서 사람 간의 보행 속도나 보행 특성이 다르더라도 걸음 수 검출이 가능했으며 제안하는 알고리즘의 평균 걸음 수 검출률은 97.37%이고 Actical의 검출률은 91.74%였으며 Actical보다 5.63% 높게 검출되었다. 또한 가속도 센서의 출력 데이터와 피 실험자 정보를 결합하여 에너지소비량(Energy Expenditure :EE)을 추정하는 회귀 공식을 도출하였다. 정확한 활동량 추정은 활동량 측정기 사용자의 생활 습관을 개선하여 비만 환자를 정상 체중으로 만들거나 과체중인 사용자에게 운동에 대한 동기 유발이 될 수 있기 때문에 정확한 활동량의 추정이 필요하다. 따라서 본 논문에서는 가속도 데이터를 실시간 활동량으로 변환하는 알고리즘을 구현하여 EE 추정의 정확성을 높였다. 구현한 알고리즘은 실험에서 같이 착용한 Actical에서 측정된 활동량 AEE(Activity Energy Expenditure)와 비교하여 성능을 검증하였다. 그 결과 호흡가스 대사분석기(K4B2)의 kcal를 기준으로 제안한 활동량 추정 알고리즘의 성능이 Actical보다 1.61% 정확하게 측정되었다. 본 연구의 결과로 만성적인 대사 증후군 환자나 활동량 측정기 사용자에게 신체활동의 가이드라인을 제시해 주며 운동에 대한 동기유발 및 조언을 해주는 지표가 될 것이다.-
dc.description.tableofcontents차 례 제 1 장 서 론 -----------------------------------1 제 1 절 연구의 배경 및 필요성 -------------------1 제 2 절 연구목적 및 방법 ------------------------5 제 3 절 논문의 구성 -----------------------------8 제 2 장 관련 연구 --------------------------------10 제 1 절 가속도계를 이용한 보행 주기 및 걸음 수 측정 기법 --------------------------------------------------10 제 1 항 센서 데이터의 정규화 ----------------------12 제 2 항 센서 모듈을 이용한 보폭 추정 알고리즘 ------13 제 3 항 가속도 센서를 이용한 걸음 수 검출 알고리즘 ------------------------------------------------16 제 2 절 가속도 데이터를 이용한 활동량 추정 알고리즘 --------------------------------------------------18 제 3 장 활동측정 임베디드 시스템 플랫폼 설계 및 걸음 데이터 획득 ---------------------------------------------------23 제 1 절 활동측정 임베디드 시스템 플랫폼 설계 -------23 제 1 항 하드웨어 구성 ----------------------------25 제 2 항 펌웨어 구성 ------------------------------27 제 3 항 개발환경 ---------------------------------28 제 2 절 실험 환경 ---------------------------------31 제 3 절 걸음 데이터 획득 및 처리 -------------------34 제 4 장 제안하는 실시간 인간 활동 데이터 분석 알고리즘 -------------------------------------------------45 제 1 절 걸음 수 검출 알고리즘 ---------------------45 제 1 항 HA(Heuristic Algorithm) ------------------47 제 2 항 ATA(Adaptive Threshold Algorithm) -------54 제 3 항 ALPA(Adaptive Locking Period Algorithm) -----------------------------------------------64 제 2 절 활동량 추정 알고리즘 ---------------------72 제 5 장 실험 결과 및 분석 --------------------------81 제 1 절 걸음 수 검출 결과 -------------------------81 제 2 절 활동량 추정 결과 -------------------------86 제 6 장 결론 및 향후 과제 ---------------------------88 참고문헌 ------------------------------------------90 Abstract ------------------------------------------98-
dc.language.isokor-
dc.publisherThe Graduate School, Ajou University-
dc.rights아주대학교 논문은 저작권에 의해 보호받습니다.-
dc.title실시간 인간 활동 데이터 분석 알고리즘 및 활동측정 시스템 설계-
dc.title.alternativeKim Yun Kyoung-
dc.typeThesis-
dc.contributor.affiliation아주대학교 일반대학원-
dc.contributor.alternativeNameKim Yun Kyoung-
dc.contributor.department일반대학원 전자공학과-
dc.date.awarded2012. 2-
dc.description.degreeMaster-
dc.identifier.localId570160-
dc.identifier.urlhttp://dcoll.ajou.ac.kr:9080/dcollection/jsp/common/DcLoOrgPer.jsp?sItemId=000000012119-
dc.subject.keyword3축 가속도센서-
dc.subject.keyword걸음수 검출-
dc.subject.keyword에너지소비량-
dc.subject.keywordAdaptive Threshold Algorithm-
dc.subject.keywordAdaptive Locking Period Algorithm-
Appears in Collections:
Graduate School of Ajou University > Department of Electronic Engineering > 3. Theses(Master)
Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse