절리암반에서 근접사면 굴착 시 기존터널의 안정성 평가를 위한 근접도 연구

DC Field Value Language
dc.contributor.advisor이상덕-
dc.contributor.author이진욱-
dc.date.accessioned2018-11-08T06:28:17Z-
dc.date.available2018-11-08T06:28:17Z-
dc.date.issued2009-08-
dc.identifier.other10108-
dc.identifier.urihttps://dspace.ajou.ac.kr/handle/2018.oak/3260-
dc.description학위논문(박사)--아주대학교 일반대학원 :건설교통공학과,2009. 8-
dc.description.abstract본 논문에서는 기존 터널에 근접하여 절리암반 사면을 굴착할 때에 응력해방과 암반 변위에 의해 터널이 변형됨에 따라 기존 터널의 안정성이 저하되는 것을 방지하기 위한 굴착 깊이에 대한 터널 근접도를 연구하였다. 특히, 터널과 동일한 이격거리의 사면을 굴착할 때에 절리각도와 굴착사면 경사를 고려하여 터널의 안전성을 확보할 수 있는 한계 깊이를 구하였다. 이를 위하여 절리면 경사각은 0°, 30°, 60°, 90°로 변화시키고 각 절리면 경사각에 대해 굴착사면 경사가 60°, 75°, 90°인 경우를 2차원 대형모형시험과 수치해석을 통하여 분석하였다. 대형모형시험은 3.1m(폭), 3.1m(높이), 0.5m(길이) 크기의 시험장치에서 콘크리트 블록을 사용하여 시험지반을 조성하여 수행하였다. 터널에서 사면까지는 터널 직경(D)만큼 이격시켰으며, 모형터널은 1/20의 상사율을 적용하여 두께 6㎜, 직경 0.6m로 제작하였다. 수치해석은 개별요소법 프로그램인 UDEC을 사용하여 수행하였다. 대형모형시험 결과와 수치해석 결과를 비교분석하여 동일한 절리면 경사각에서도 굴착사면 경사와 굴착 깊이에 따라 터널 내공변위와 터널의 부재력이 다르게 발생하며, 터널 안전에 영향을 미치는 사면의 굴착 깊이는 굴착사면 경사가 급할수록 얕아진다는 것을 확인하였다. 굴착사면 경사가 절리면 마찰각보다 큰 경우에는 사면굴착 시 사면 붕괴가 발생하지만, 사면을 절리면 경사각과 동일한 경사로 굴착을 하면 사면붕괴를 방지할 수 있으며, 터널의 안정성을 높일 수 있을 뿐만 아니라 터널과의 이격거리도 감소시킬 수 있다는 것을 확인하였다. 이상의 연구를 통해서 절리암반 내 기존터널과 터널 직경(D)만큼 근접하여 절리암반 사면을 굴착할 경우에 절리면 경사각과 굴착사면 경사에 따른 굴착 깊이별 터널 근접도를 제시하였다.-
dc.description.tableofcontents목 차 요 약 문 ⅰ 그림목차 ⅴ 표 목 차 ⅹ 제 1 장 서 론 1 1.1 연구 필요성 및 목적 1 1.2 연구동향 2 1.3 연구내용 및 범위 5 제 2 장 이론적 배경 7 2.1 불연속면에서의 전단거동 7 2.1.1 직접전단시험 시의 응력-변형률 거동 7 2.1.2 불연속면 거칠기의 영향 7 2.1.3 삼축압축시험을 이용한 전단강도 모델 9 2.1.4 구속조건 하의 전단강도 12 2.1.5 구속효과에 따른 전단거동 12 2.1.6 불연속면의 전단강도 모델 14 2.2 터널 주변의 전단영역 18 2.3 터널의 영향범위 21 2.4 지반과 터널라이닝의 강성 23 2.5 암반사면 안정해석 27 2.5.1 원호파괴 27 2.5.2 평면파괴 28 2.5.3 쐐기파괴 30 2.5.4 전도파괴 34 2.6 절리암반의 파괴형태 39 2.7 근접굴착의 근접도 43 제 3 장 대형모형시험 45 3.1 개 요 45 3.2 모형 절리암반의 특성 45 3.3 모형시험 장치 48 3.3.1 모형 토조 48 3.3.2 모형 터널 49 3.3.3 계측 시스템 52 3.3.4 계측 위치 53 3.4 대형모형시험 방법 57 3.4.1 시험 종류 57 3.4.2 절리암반 조성 61 3.4.3 대형모형시험 순서 61 제 4 장 수치해석 64 4.1 개 요 64 4.2 해석 모델 64 4.3 입력 변수 65 제 5 장 모형시험과 수치해석 결과 고찰 70 5.1 개 요 70 5.2 굴착사면 경사에 따른 터널과 절리암반 거동 분석 70 5.2.1 터널 내공변위 71 5.2.2 터널라이닝 모멘트 85 5.2.3 터널라이닝 축력 96 5.2.4 절리암반 지중변위 103 5.3 사면 굴착단계에 따른 터널과 절리암반 거동분석 108 5.3.1 지중변위와 수평토압 108 5.3.2 터널 내공변위와 터널라이닝 모멘트 126 5.3.3 터널거동 원인분석 140 5.4 굴착 깊이에 따른 근접도 제시 146 5.4.1 터널거동에 영향을 미치는 굴착단계 146 5.4.2 궤도틀림 154 5.4.3 굴착 깊이에 따른 근접도 156 제 6 장 결 론 161 참 고 문 헌 164 부 록 168 ABSTRACT 252|LIST OF FIGURE Fig. 1.1 Trap door testing apparatus (Jian-Hong Wu, 2004) 3 Fig. 2.1 Tangential and normal displacements during a direct shear of a rough joint 8 Fig. 2.2 Patton's law for the joint shear strength of rock 9 Fig. 2.3 Triaxial test results with jointed specimens 11 Fig. 2.4 The condition between deviations stress and the discontinuity angles 12 Fig. 2.5 Prediction of shear behavior for different confining effect 13 Fig. 2.6 Bilinear model suggested by Patton 15 Fig. 2.7 Nonlinear shear strength model suggested by Barton 16 Fig. 2.8 A circular tunnel in a jointed rock mass under biaxial loading condition 18 Fig. 2.9 Shear sliding zone (B.Shen, 1997) 19 Fig. 2.10 Stress, strain and displacement distributions in the ground around the tunnel 22 Fig. 2.11 Streamline around the cylinder shape obstacle 23 Fig. 2.12 Effect of flexibility ratio of the tunnel lining 24 Fig. 2.13 Maximum bending moment depending on the stiffness ratio of ground tunnel lining (Duddeck and Erdmann, 1985) 26 Fig. 2.14 Shape of circular failure and distribution of poles by stereonet 27 Fig. 2.15 Shape of plane failure and distribution of poles by stereonet 28 Fig. 2.16 Stability analysis of plane failure with tension crack 30 Fig. 2.17 Shape of wedge failure and distribution of poles 31 Fig. 2.18 Stability analysis of wedge failure 32 Fig. 2.19 Shape of toppling failure and distribution of poles by stereonet 34 Fig. 2.20 Geometry for limit equilibrium analysis of toppling failure 35 Fig. 2.21 Limit equilibrium condition for toppling and sliding of n-th block 37 Fig. 2.22 Configuration of joint set(Singh, 1997) 40 Fig. 2.23 Modes of failure of jointed mass(Singh et al. 2002) 41 Fig. 2.24 A proximity of tunnel(Side excavation of tunnel, RTRI, 1996) 44 Fig. 3.1 Result of uniaxial compression test 46 Fig. 3.2 Result of normal stiffness test for joint 47 Fig. 3.3 Result of shear stiffness test for joint 47 Fig. 3.4 Schematic diagram of the model test box 48 Fig. 3.5 Front view of the model test box 49 Fig. 3.6 Data acquisition systems used for the model tests 53 Fig. 3.7 Measurement of tunnel displacement 54 Fig. 3.8 Measurement of tunnel lining member forces 54 Fig. 3.9 Location of underground displacement and horizontal earth pressure sensors 55 Fig. 3.10 Installation of LVDTs for the measurement of displacement 55 Fig. 3.11 Installation of lateral earth pressure sensors 56 Fig. 3.12 Test Cases 58 Fig. 3.13 Excavation step (J30S75 case) 59 Fig. 3.14 Installation of shaped block 61 Fig. 3.15 Test procedure 63 Fig. 4.1 Numerical analysis model by UDEC 65 Fig. 5.1 Displacement of the tunnel lining with slope angle of 0° dip of joint 74 Fig. 5.2 Displacement of tunnel lining with 0° dip of joint (Shallow excavation) 75 Fig. 5.3 Displacement of the tunnel lining with slope angle of 30° dip of joint 76 Fig. 5.4 Displacement of tunnel lining with 30° dip of joint (Deep excavation) 77 Fig. 5.5 A vector diagram of tunnel displacement 0° dip of joint (Numerical analysis) 78 Fig. 5.6 A vector diagram of tunnel displacement 30° dip of joint (Numerical analysis) 78 Fig. 5.7 Displacement of tunnel lining with 60° dip of joint 81 Fig. 5.8 Displacement of the tunnel lining with slope angle of 90° dip of joint 82 Fig. 5.9 Displacement of tunnel lining with 90° dip of joint (Deep excavation) 83 Fig. 5.10 A vector diagram of tunnel displacement 60° dip of joint (Numerical analysis) 84 Fig. 5.11 A vector diagram of tunnel displacement 90° dip of joint (Numerical analysis) 84 Fig. 5.12 Moment of the tunnel lining with slope angle of 0° dip of joint 86 Fig. 5.13 Moment of the tunnel lining with 0° dip of joint (Deep excavation) 87 Fig. 5.14 Moment of the tunnel lining with slope angle of 30° dip of joint 90 Fig. 5.15 Moment of the tunnel lining with 30° dip of joint (Deep excavation) 91 Fig. 5.16 Moment of the tunnel lining with 60° dip of joint 92 Fig. 5.17 Moment of the tunnel lining with slope angle of 90° dip of joint 94 Fig. 5.18 Moment of the tunnel lining with 90° dip of joint (Deep excavation) 95 Fig. 5.19 Axial force of the tunnel lining with slope angle of 0° dip of joint 100 Fig. 5.20 Axial force of the tunnel lining with slope angle of 30° dip of joint 101 Fig. 5.21 Axial force of the tunnel lining with slope angle of 90° dip of joint 102 Fig. 5.22 Underground horizontal displacement with slope angle of 0° dip of joint 105 Fig. 5.23 Underground horizontal displacement with slope angle of 30° dip of joint 106 Fig. 5.24 Underground horizontal displacement with slope angle of 90° dip of joint 107 Fig. 5.25 Measuring point of horizontal earth pressure with 0° dip of joint 108 Fig. 5.26 Changes in the horizontal earth pressure and horizontal underground displacement according to excavation steps(J0S60) 111 Fig. 5.27 Changes in the horizontal earth pressure and horizontal underground displacement during excavation steps(J0S75) 112 Fig. 5.28 Changes in the horizontal earth pressure and horizontal underground displacement during excavation steps(J0S90) 113 Fig. 5.29 Measuring point of horizontal earth pressure with 30° dip of joint 114 Fig. 5.30 Changes in the horizontal earth pressure and horizontal underground displacement during excavation steps(J30S60) 116 Fig. 5.31 Changes in the horizontal earth pressure and horizontal underground displacement during excavation steps(J30S75) 117 Fig. 5.32 Changes in the horizontal earth pressure and horizontal underground displacement during excavation steps(J30S90) 118 Fig. 5.33 Measuring point of horizontal earth pressure with 60° dip of joint 119 Fig. 5.34 Changes in the horizontal earth pressure and horizontal underground displacement during excavation steps(J60S60) 120 Fig. 5.35 Measuring point of horizontal earth pressure with 90° dip of joint 121 Fig. 5.36 Changes in the horizontal earth pressure and horizontal underground displacement during excavation steps(J90S60) 123 Fig. 5.37 Changes in the horizontal earth pressure and horizontal underground displacement during excavation steps(J90S75) 124 Fig. 5.38 Changes in the horizontal earth pressure and horizontal underground displacement during excavation steps(J90S90) 125 Fig. 5.39 Displacement and moment of tunnel lining by excavation steps with J0S60 130 Fig. 5.40 Displacement and moment of tunnel lining by excavation steps with J0S75 131 Fig. 5.41 Displacement and moment of tunnel lining by excavation steps with J0S90 132 Fig. 5.42 Displacement and moment of tunnel lining by excavation steps with J30S60 133 Fig. 5.43 Displacement and moment of tunnel lining by excavation steps with J30S75 134 Fig. 5.44 Displacement and moment of tunnel lining by excavation steps with J30S90 135 Fig. 5.45 Displacement of tunnel lining by excavation steps with 60° dip of joint 136 Fig. 5.46 Moment of the tunnel lining by excavation steps with 60° dip of joint 136 Fig. 5.47 Displacement and moment of tunnel lining by excavation steps with J90S60 137 Fig. 5.48 Displacement and moment of tunnel lining by excavation steps with J90S75 138 Fig. 5.49 Displacement and moment of tunnel lining by excavation steps with J90S90 139 Fig. 5.50 Principal stress distribution by numerical analysis(J0S60) 141 Fig. 5.51 Principal stress distribution by numerical analysis(J30S75) 143 Fig. 5.52 The excavation step of maximum tunnel deformation at 0° dip of joint 147 Fig. 5.53 The excavation step of maximum tunnel deformation at 30° dip of joint 149 Fig. 5.54 The excavation step of maximum tunnel deformation at 60° dip of joint 151 Fig. 5.55 The excavation step of maximum tunnel deformation at 90° dip of joint 153 Fig. 5.56 Excavation depth at proximity diagram of tunnel 158 Fig. 5.57 A proximity diagram with excavation depth with slope angle 60° 159 Fig. 5.58 A proximity diagram with excavation depth with slope angle 75° 159 Fig. 5.59 A proximity diagram with excavation depth with slope angle 90° 160 LIST OF TABLE Table 2.1 Modes of failure in jointed mass(M., Singh, 2004) 42 Table 2.2 Type and feature of adjacent construction 43 Table 3.1 Mechanical properties of block and joint 46 Table 3.2 Stiffness ratio and thickness of the tunnel lining model 51 Table 3.3 Reduction ratio of the model test 52 Table 3.4 Data acquisition system 52 Table 3.5 Measuring sensors 53 Table 3.6 Type of tests 58 Table 4.1 Mechanical properties of MC model and BB model 66 Table 4.2 Mechanical properties of the block 67 Table 4.3 Mechanical properties of the discontinuities 69 Table 4.4 Mechanical properties of the tunnel lining 69 Table 5.1 Maximum displacement of the tunnel lining with slope angle (dip of joint : 0°, 30°) 72 Table 5.2 Maximum displacement of the tunnel lining with slope angle (dip of joint : 60°, 90°) 80 Table 5.3 Maximum moment of the tunnel lining with 0° dip of joint 85 Table 5.4 Maximum moment of the tunnel lining with 30° dip of joint 89 Table 5.5 Maximum moment of the tunnel lining with 90° dip of joint 93 Table 5.6 Maximum axial force of the tunnel lining with 0° dip of joint 96 Table 5.7 Maximum axial force of the tunnel lining with 30° dip of joint 97 Table 5.8 Maximum axial force of the tunnel lining with 90° dip of joint 98 Table 5.9 Displacement and moment of tunnel lining during excavation with 0° dip of joint 126 Table 5.10 Displacement and moment of tunnel lining during excavation with 30° dip of joint 128 Table 5.11 Displacement and moment of tunnel lining during excavation with 60° dip of joint 128 Table 5.12 Displacement and moment of tunnel lining during excavation with 90° dip of joint 129 Table 5.13 The excavation steps of tunnel member force and displacement increased sharply (dip of joint 0°) 146 Table 5.14 The excavation steps of tunnel member force and displacement increased sharply (dip of joint 30°) 148 Table 5.15 The excavation steps of tunnel member force and displacement increased sharply (dip of joint 60°) 150 Table 5.16 The excavation steps of tunnel member force and displacement increased sharply (dip of joint 90°) 152 Table 5.17 Track maintenance standard on train 154 Table 5.18 Track maintenance standard for alignment on high speed train 155-
dc.language.isokor-
dc.publisherThe Graduate School, Ajou University-
dc.rights아주대학교 논문은 저작권에 의해 보호받습니다.-
dc.title절리암반에서 근접사면 굴착 시 기존터널의 안정성 평가를 위한 근접도 연구-
dc.title.alternativeLee Jin Wook-
dc.typeThesis-
dc.contributor.affiliation아주대학교 일반대학원-
dc.contributor.alternativeNameLee Jin Wook-
dc.contributor.department일반대학원 건설교통공학과-
dc.date.awarded2009. 8-
dc.description.degreeMaster-
dc.identifier.localId567951-
dc.identifier.urlhttp://dcoll.ajou.ac.kr:9080/dcollection/jsp/common/DcLoOrgPer.jsp?sItemId=000000010108-
dc.subject.keyword절리암반-
dc.subject.keyword근접사면 굴착-
dc.subject.keyword터널 근접도-
Appears in Collections:
Graduate School of Ajou University > Department of Construction and Transportation Engineering > 3. Theses(Master)
Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse