대기압 수증기 플라즈마에 의하여 촉진되는 화학반응 연구

DC Field Value Language
dc.contributor.advisor이웅무-
dc.contributor.author구일교-
dc.date.accessioned2018-10-16T02:15:06Z-
dc.date.available2018-10-16T02:15:06Z-
dc.date.issued2007-02-
dc.identifier.other1871-
dc.identifier.urihttps://dspace.ajou.ac.kr/handle/2018.oak/2053-
dc.description학위논문(박사)--아주대학교 일반대학원 :에너지학과,2007.2-
dc.description.abstract담낭담석증이나 급성담낭염 환자에서 시행되는 담낭절제술은 비교적 안전한 수술이나, 심한 심혈관계질환, 폐질환, 패혈증, 다기관기능상실같은 고위험인자가 동반된 고령의 환자에서는 수술과 관련된 이환율과 사망률이 상당히 증가한다. 이들 환자에서 화학적 담낭절제술을 시행할 수 있다면 위험이 동반된 수술을 피할 수 있을 것이다. 그러나 지금껏 보고 된 동물실험 및 임상보고에서 100% 신뢰도를 보이는 효과적인 경화제는 아직 알려져 있지 않다. 이에 저자는 안전성 및 효과가 입증된 50% 농도의 아세트산을 이용하여 화학적 담낭절제술이 가능한지 알아보고자 하였다. 비글견 다섯마리(8-10kg)를 전신마취 후 실시간 초음파 유도 하에 경피경간 담낭조루술을 시행하였다. 그 후 담낭조루술 경로를 이용하여 경피적으로 코일과 아교로 담낭관 폐색을 시행하였다. 담낭조영술을 통해 담낭관의 완전 폐색과 배액관 경로로의 조영제 누출이 없음을 확인 후 담낭의 화학적 경화술을 시행하였다. 담낭의 화학적 경화술은 적정 부피(4-7ml)의 50% 아세트산을 배액관을 통해 주입 후 20분에 걸쳐 체위를 바꾸는 방법으로 시행하였다. 경화술 후에는 아세트산을 모두 배액하고 담낭을 세척 후 배액관을 제거하였다. 시술 8주 후 실험 동물을 희생시키고 부검을 시행하여 담낭 및 담관 그리고 인접한 간을 한 덩어리(en bloc)로 절제하여 고정하였다. 그 후 표준 기법으로 조직표본을 제작 후 1명의 병리과 전문의가 광학현미경으로 병리조직검사를 시행하였다. 다섯마리의 비글견 모두에서 50% 아세트산을 이용한 화학적 담낭절제술을 성공적으로 시행할 수 있었다. 육안병리검사 상 담낭은 모두 위축 및 섬유화 변화를 보였고 담낭 내 점액, 담즙, 농양 저류 등의 합병증을 보인 예는 없었다. 병리조직학적검사 상 담낭 기저와 몸통 점막은 응고괴사로 인한 완전 탈락소견을 보였으나 담낭 경부에서는 잔여점막과 재생점막이 일부 관찰되었다. 이는 담낭관 폐색과정에 사용된 코일과 아교로 인해 효과적인 경화술이 시행되지 못한 것이 원인으로 추정된다. 담낭 내에는 출혈괴사조직파편이 관찰되었고, 담낭벽은 섬유화가 동반된 만성염증과 분홍빛 무정형물질에 대한 이물질거대세포반응 소견을 보였다. 아세트산(50%)을 이용한 담낭의 화학적 절제술은 안전하고 매우 효과적이었다. 또한 담낭관 폐색방법만 변화시킨다면 완전히 담낭상피를 제거할 수 있을 것으로 기대된다.-
dc.description.tableofcontentsChapter 1. Introduction = 1 1.1 Introduction to plasma = 1 1.2 Plasmas at atmospheric pressure = 4 1.3 Micro-plasma = 7 1.4 Conventional hydrogen exchange reaction = 11 1.5 Conventional method to produce hydrogen from water = 14 1.6 Statement of the problems = 23 1.7 Motivation and scope = 24 Chapter 2. Experimental = 35 2.1 Production and control of water vapor = 35 2.2 Microplasma assembly = 38 2.2.1 Microhollow cathode plasma = 38 2.2.2 Microplasma inside porous medium (MIPM) = 39 2.3 Microplasma setup = 41 2.3.1 Microdischarge setup in water vapor = 41 2.3.2 Experimental setup for hydrogen isotope exchange reactions = 44 2.3.3 Hydrogen production system setup by a plasma-chemical reaction = 47 2.3.4 Plasma-assisted hydrogen pump assembly (PAHPA) reactor setup = 49 2.4 Optical characteristics = 52 2.4.1 Emission spectroscopy = 52 2.4.2 FT-IR spectroscopy = 54 2.5 Gas analysis = 55 2.6 Hydrogen pump assembly = 57 Chapter 3. Atmospheric pressure micro discharge in water vapor = 59 3.1 Current-voltage characteristics of the discharge in water vapor = 59 3.2 Effect of the vapor temperature on the power consumption = 71 3.3 Optical diagnostic of water vapor discharge = 72 Chapter 4. Hydrogen isotope exchange reactions in an atmospheric pressure discharge utilizing water as carrier gas = 83 4.1 Atmospheric pressure discharge by 60 Hz AC power = 83 4.2 Hydrogen isotope exchange reactions occurring in the flowing gas through the hollow electrode discharge = 85 4.3 Optical emission spectroscopy = 91 4.4 Energy efficiency of the exchange reactions = 95 4.5 Rate of deuterium transfer reaction = 97 4.6 Separation factor, plasma efficiency and conversion factor = 100 4.7 Deuterium exchange between ternary system (H2O/D2O/HDO) and H2 = 109 Chapter 5. Hydrogen production by plasma chemical reaction = 111 5.1 Hydrogen production at pure water = 111 5.2 Hydrogen production by the discharge in H2O/SO2 gas mixture = 119 5.3 Emission spectroscopic studies = 127 5.4 Plasma-assisted hydrogen pump assembly (PAHPA) = 129 Chapter 6. Conclusions = 134 6.1 Contribution of this thesis = 134 6.2 Recommendations for future work = 137 References = 138 Appendices = 155 A. Conductivity of the discharge medium as a function of the gas temperature = 155 B. Low temperature plasma-chemical treatment of PdCl2 film by atmospheric pressure hydrogen plasma = 161 Publication list = 168 Abstract in Korean = 176-
dc.language.isoeng-
dc.publisherThe Graduate School, Ajou University-
dc.rights아주대학교 논문은 저작권에 의해 보호받습니다.-
dc.title대기압 수증기 플라즈마에 의하여 촉진되는 화학반응 연구-
dc.title.alternativeKoo, Il-Gyo-
dc.typeThesis-
dc.contributor.affiliation아주대학교 일반대학원-
dc.contributor.alternativeNameKoo, Il-Gyo-
dc.contributor.department일반대학원 에너지학과-
dc.date.awarded2007. 2-
dc.description.degreeMaster-
dc.identifier.localId565771-
dc.identifier.urlhttp://dcoll.ajou.ac.kr:9080/dcollection/jsp/common/DcLoOrgPer.jsp?sItemId=000000001871-
dc.subject.keywordPlasma-
dc.subject.keywordAtmospheric pressure-
dc.subject.keywordMicroplasma-
dc.subject.keywordWater plasma-
dc.subject.keywordHydrogen production-
dc.subject.keywordHydrogen isotope exchange reaction-
dc.subject.keywordNuclear hydrogen-
dc.description.alternativeAbstractThis dissertation first investigates the generation of micro-discharges in water vapor and their characteristics. Then, the application of the water vapor plasma in hydrogen isotope exchange reactions has been suggested; finally, a novel method of hydrogen production that employs plasma-chemical reaction and plasma-assisted electrochemical reaction has been propounded. Water vapor plasma has been generated along with micro hollow cathode discharge (MHCD) and micro plasma inside a porous medium (MIPM). Water vapor at atmospheric pressure in the temperature range from 150 to 700oC was used as the carrier gas for DC powered electrical discharges in MHCD and MIPM. The current-voltage profile of the discharge exhibited a positive differential resistivity characterizing an abnormal glow discharge at MHCD. Voltage-current characteristics at MIPM, visualization of the discharge and estimation of the current density indicate that the discharge is operating in normal glow regime. The power consumption for the water discharge at 700oC was less than 50% of that at 150oC. The emission spectra acquired for the glow region revealed the characteristic lines of OH, H and O species. The deuterium exchange reaction HDO + H2→H2O + HD was studied in a manner similar to the tritium transfer reaction as shown in DTO + D2→D2O + DT the first step in the tritium isotope separation of tritiated heavy water (DTO). The transfer reaction was subjected to plasma-chemical catalysis by allowing a gas mixture such as H2O/D2, D2O/H2, H2O/HDO/H2 or H2O/ D2O/HDO/H2 to flow through a discharge zone formed in the reaction chamber at atmospheric pressure with an inner temperature maintained just above 100oC. The plasma-chemical reactions determined using infrared and emission spectroscopy revealed that the mixture was subjected to instantaneous deuterium transfer reactions when it passed through the zone. The effectiveness of the method was demonstrated by the high deuterium transfer rate, high separation factor for the transfer, and the possibility of miniaturizing the separation facility. We have developed a novel method of hydrogen production by using plasma-chemical reaction with SO2 gas and plasma-assisted hydrogen pump assembly (PAHPA). Hydrogen produced in the reactor was confirmed by collecting and analyzing the produced gas. An increase in the gas temperature and including SO2 gas results in an increase of the amount of hydrogen from water vapor by using the plasma-chemical reaction. The discharge region was monitored using emission spectroscopy, while it was sustained in water and water/SO2 medium to obtain information such as the transient chemical species and the effect of temperature on the reactivity. The energy efficiency of PAHPA at low temperature around 100oC is about 40%.-
Appears in Collections:
Graduate School of Ajou University > Department of Energy Systems > 3. Theses(Master)
Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse