SV40 -T- antigen 으로 불사화된 중간엽 줄기세포에서의 대사체학적 분석연구

Alternative Title
Studies on metabolomic analysis with immortalized mesenchymal stem cells by SV40 T-antigen
Author(s)
심점순
Alternative Author(s)
Jeom Soon Shim
Advisor
이광
Department
일반대학원 의생명과학과
Publisher
The Graduate School, Ajou University
Publication Year
2017-08
Language
eng
Keyword
amino acidgas chromatography-mass spectrometryhMSCsimmortalized cell lineSV40 T antigen
Alternative Abstract
This study was carried out by transfection of SV40 T antigen into mesenchymal stem cell hMSCs collected from human bone marrow. Immortalized hMSCs-T cell is a mesenchymal stem cell capable of multiple cell division. The cell cycle of hMSCs was relatively short, but hMSCs-T cell was able to divide more than 80 passages. The amount of amino acids (AAs) in the cell was measured by gas chromatography in order to examine the metabolism of the cell according to the elongated cell cycle. Amino acids are the key component of protein synthesis and intracellular nitrogen. In addition, we aimed to study the amino acid alteration and find a biomarker that can support the continuous growth of cells that are capable of continuously production for the industrial use of immortalized stem cells. The alterations of amino acids in mesenchymal stem cells and immortalized stem cells are written in chapter 1. Beside hMSCs-T cell, HEK293 transfected with synphilin-1 also altered amino acid composition. Synphilin-1 is an α-synuclein interacting protein in Lewy body, which is a characteristic of Parkinson's disease. When HEK293 and S293, HEK293 stably overexpressed synphilin-1, were starved with KRBB buffer, the morphological changes and cell aggregations were different between cell types. The difference might be from intracellular metabolites and protein compositions. Amino acid sensing pathway is controlled by intracellular and extracellular amount of amino acid and changes of amino acids are important factors in controlling protein synthesis and degradation. The mammalian target of rapamycin (mTOR) is important in amino acid sensing that regulates cell growth and cell survival. This study is to estimate the amount of amino acid and detect the phosphorylation of S6K1 and Akt influenced by mTORC1 and mTORC2. HEK293 and S293 were starved and challenged with glutamine, glutamic acid, and proline to confirm the amino acid alteration induced from synphilin-1. The results of amino acid and biological data were recorded in chapter 2.
URI
https://dspace.ajou.ac.kr/handle/2018.oak/19952
Fulltext

Appears in Collections:
Graduate School of Ajou University > Department of Biomedical Sciences > 4. Theses(Ph.D)
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse