Symmetric and Kähler–Einstein Fano polygons
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | 황동선 | - |
dc.contributor.author | 김연수 | - |
dc.date.accessioned | 2022-11-29T02:32:19Z | - |
dc.date.available | 2022-11-29T02:32:19Z | - |
dc.date.issued | 2020-08 | - |
dc.identifier.other | 30222 | - |
dc.identifier.uri | https://dspace.ajou.ac.kr/handle/2018.oak/19833 | - |
dc.description | 학위논문(석사)--아주대학교 일반대학원 :수학과,2020. 8 | - |
dc.description.tableofcontents | Introduction 1 Preliminaries 3 Symmetric and Kähler–Einstein Fano polygons 8 B-transformations 15 Further discussions 22 Bibliography 27 | - |
dc.language.iso | eng | - |
dc.publisher | The Graduate School, Ajou University | - |
dc.rights | 아주대학교 논문은 저작권에 의해 보호받습니다. | - |
dc.title | Symmetric and Kähler–Einstein Fano polygons | - |
dc.type | Thesis | - |
dc.contributor.affiliation | 아주대학교 일반대학원 | - |
dc.contributor.alternativeName | Kim Yeonsu | - |
dc.contributor.department | 일반대학원 수학과 | - |
dc.date.awarded | 2020. 8 | - |
dc.description.degree | Master | - |
dc.identifier.localId | 1151746 | - |
dc.identifier.uci | I804:41038-000000030222 | - |
dc.identifier.url | http://dcoll.ajou.ac.kr:9080/dcollection/common/orgView/000000030222 | - |
dc.subject.keyword | B-transformation | - |
dc.subject.keyword | Kähler–Einstein Fano polygon | - |
dc.subject.keyword | Symmetric Fano polygon | - |
dc.description.alternativeAbstract | We investigate symmetric and Kähler–Einstein Fano polytopes mainly focusing on the two dimensional singular case. In particular, we construct some examples of symmetric but not Kähler–Einstein singular Fano polygons which cannot exist in the smooth case. In fact, we completely classified all such cases. We also show that symmetric and Kähler–Einstein Fano polygon admits a non-trivial rotation and construct examples of a Fano polygon that isKähler–Einstein but not symmetric. To understand more about Kähler–Einstein Fano polygons and symmetric Fano polygons, we introduce a new notion called the B-transformation of a Fano polygon. In particular, if a Fano polygon is symmetric or Kähler–Einstein then the B-transformation of the Fano polygon is also a Fano polygon. Then, we show that the property of being symmetric for Fano polygons is invariant under the B-transformation. | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.