임상 데이터 분석의 질적 향상을 위한 모션센서 기반 무선 네트워크 시스템

Alternative Title
JaeYeon Park
Author(s)
박재연
Alternative Author(s)
JaeYeon Park
Advisor
이석원
Department
일반대학원 컴퓨터공학과
Publisher
The Graduate School, Ajou University
Publication Year
2020-02
Language
eng
Keyword
Clinical Decision Support SystemHealth Care Information SystemsMotion SensingNoise FilterWireless Sensor Network
Alternative Abstract
Recently, the advancement in data analytics including various machine learning methods lead to designing effective clinical decision support systems (CDSS) in the clinical sector. However, a CDSS including noisy clinical data can provide unhelpful (if not misleading) decision support to clinical staff as well as clinically dangerous decisions to already suffering patients. Therefore, in order to design a better and effective CDSS, such noisy data caused by patient movements and clinical protocols should be identified and filtered from the inputs in in the training dataset for CDSS development. For this purpose, we propose MediSense a system designed to identify and classify different patient motions on the bed and filter out physiological signal data points collected when patient motion occurs using sensor-based motion classification results. Essentially, MediSense can be considered as ``glasses" for the third eye in accurate-sensitive clinical domain is an intelligent embedded wireless sensing system for supporting a CDSS and consists of a motion classifier, a wireless network and localization techniques. To evaluate our system, we deploy MediSense in intensive care units (ICUs) at the Ajou University Hospital Trauma Center, a major hospital facility located in Suwon, South Korea, and evaluate its each system component's performance from real patient traces collected at these ICUs through a 4-month pilot study. Our results show that MediSense successfully classifies patient motions on the bed with >90% accuracy, shows 100% reliability in determining the locations of beds within the ICU, and each bed-attached sensor achieves a lifetime of more than 33 days, which satisfies the application-level requirements suggested by our clinical partners. Furthermore, a simple case-study with arrhythmia patient data shows that MediSense can help improve the clinical diagnosis accuracy.
URI
https://dspace.ajou.ac.kr/handle/2018.oak/19649
Fulltext

Appears in Collections:
Graduate School of Ajou University > Department of Computer Engineering > 3. Theses(Master)
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse