A Study on Asymptotic Characteristics of Scalar Quantizers

DC Field Value Language
dc.contributor.advisorSangsin Na-
dc.contributor.authorRhee, Jagan-
dc.date.accessioned2019-10-21T07:18:27Z-
dc.date.available2019-10-21T07:18:27Z-
dc.date.issued2012-08-
dc.identifier.other12657-
dc.identifier.urihttps://dspace.ajou.ac.kr/handle/2018.oak/17996-
dc.description학위논문(박사)Ajou University, Graduate School 일반대학원 :전자공학과,2012. 8-
dc.description.tableofcontentsAcknowledgement Abstract List of Figures List of Tables List of Symbols 1. Introduction 1.1 Overview 1.2 Asymptotic Analysis 1.3 Scalar Quantizers 1.4 Source Distributions of Interest 2. Optimal Scalar Quantizers 2.1 Optimal Uniform Quantizers 2.2 Optimal Nonuniform Quantizers 3. Mismatched Scalar Quantizers 3.1 Mismatched Uniform Quantizers 3.2 Mismatched Nonuniform Quantizers 4. Numerical Results 4.1 Implementation 4.2 Optimal Uniform Quantizers 4.3 Optimal Nonuniform Quantizers 4.4 Mismatched Uniform Quantizers 4.5 Mismatched Nonuniform Quantizers 5. Conclusions A. Numerical Tables B. Source Codes in MATLAB Bibliography Index-
dc.language.isoeng-
dc.publisherThe Graduate School, Ajou University-
dc.rights아주대학교 논문은 저작권에 의해 보호받습니다.-
dc.titleA Study on Asymptotic Characteristics of Scalar Quantizers-
dc.title.alternativeJagan Rhee-
dc.typeThesis-
dc.contributor.affiliation아주대학교 일반대학원-
dc.contributor.alternativeNameJagan Rhee-
dc.contributor.department일반대학원 전자공학과-
dc.date.awarded2012. 8-
dc.description.degreeMaster-
dc.identifier.localId570385-
dc.identifier.urlhttp://dcoll.ajou.ac.kr:9080/dcollection/jsp/common/DcLoOrgPer.jsp?sItemId=000000012657-
dc.description.alternativeAbstractAsymptotic characteristics of scalar quantizers are investigated in this study. The covered quantizers are symmetric uniform and symmetric nonuniform quantizers optimized for the sources with specific probability densities with zero-mean and unit-variance including the two-sided Rayleigh, the normal, the Laplace, the gamma, the Bucklew-Gallagher, and the Hui-Neuhoff distributions. Although the resulting nonuniform quantizers optimized for the latter three distributions are not symmetric with even numbers of quantization points, only nonnegative half part was considered in the study since the effect of asymmetry vanishes as the number of quantization points increases. The covered asymptotic characteristics of an optimal quantizer are the innermost threshold, the outermost threshold, the inner distortion, the outer distortion, and the total distortion. To verify the results from the asymptotic analyses, optimal quantizers for the considered distributions have been designed for bit rates up to 20 (hence 2^20=1,048,576 quantization points) for uniform quantizers and 16 (hence 2^16=65,536 quantization points) for nonuniform quantizers. It is concluded that the asymptotic formulas for the characteristics of optimal/mismatched and uniform/nonuniform quantizers are generally consistent with the observed numerical results from the designed quantizers. Also, the high resolution numerical data obtained from the designed quantizers can be useful as references for possible future theoretical analyses of symmetric scalar quantizers.-
Appears in Collections:
Graduate School of Ajou University > Department of Electronic Engineering > 3. Theses(Master)
Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse