허혈성 뇌졸중은 뇌로 전달되는 혈관이 막힘으로 치명적인 뇌기능의 손실을 초래하며, 성인에게 신체적 결함을 일으키는 가장 큰 원인 중에 하나이다. 최근 세포대체 요법으로 주목을 받고 있는 줄기세포는 질병으로 인해 손상된 조직이 회복되기 위한 생물학적인 대체 세포를 제공한다는 측면에서 뇌졸중 치료에 새로운 가능성을 제시하고 있다. 본 연구에서는 뇌졸중 쥐에 인간 유래 중간엽 줄기세포 (Mesenchymal stem cells, MSCs)을 정맥으로 주입함으로써 줄기세포의 치료효과 및 그 기전을 관찰하려고 한다.
실험 I: 뇌졸중 환자와 같이 임상치료에 자가이식이 가능한 MSC 는 체외 배양으로 세포 수를 확장하여 이용한다. 하지만 배양횟수가 신경재생과 영양공급에 대한 영향은 잘 규명되어있지 않다. 본 실험에서는 MSCs passage 가 뇌졸중 동물모델에 미치는 영향을 연구하였다. 뇌졸중 쥐의 꼬리 정맥으로 서로 다른 passage 의 MSCs 를 주입한 결과 초기 passage 의 MSC 를 주입한 군에서 손상된 신경학적 행동변화가 회복되었고 신경재생이 증가되는 것을 관찰하였다. 일부 hMSCs 는 신경세포로 분화되는 것을 관찰되었으며, 또한 신경 영양인자로 알려진 glial cell-line-derived neurotrophic factor(GDNF), nerve growth factor(NGF), vascular endothelial growth factor(VEGF), hepatocyte growth factor(HGF) 등의 영양인자는 초기 passage 의 MSC 를 처리한 뇌에서 후기 passage MSCs 를 처리한 군에 비해 발현 양이 현저히 증가됨을 관찰하였다. 따라서 초기 passage hMSCs 가 후기 passage hMSCs 보다 신경재생뿐만 아니라 영양인자의 증가와 같은 여러 면에서 탁월한 효과를 나타내었다.
실험 II: hMSC를 처리한 허혈성 뇌졸중에서의 분자생물학적 변화를 연구하기 위해, 최신 기법인 프로티오믹스(proteomic) 방법을 이용하여 sham, transient middle cerebral artery occlusion (tMCAo) 그룹과 hMSCs를 처리한 tMCAo 그 룹간의 단백질 발현 정도를 비교하였다. 2-Dimensinal Electrophoresis(2-DE)와 matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) 분석을 이용하여 세 그룹간 발현 정도가 다른 14개의 단백 질을 규명하였다. 그 중 11개의 단백질은 hMSC 처리한 tMCAo 그룹에서 현저 하게 증가 혹은 감소 되였고, 3개의 단백질은 hMSC 처리한 그룹에서 정상 쥐와 비슷하게 회복 되였다. 이런 2-DE의 결과는 Western blot으로 재현됨을 확인하 였다. hMSCs에 의해 증가된 단백질 중에는 Annexin A3, GRP78과 같은 angiogenesis 와 신경보호 작용에 도움을 주는 단백질이 관찰되었다. Synaptosomal-associated protein 25(SNAP-25)와 transitional endoplasmic reticulum ATPase 와 같은 단백질은 hMSCs 처리한 군에서 정상 수준으로 회 복 되였는데 이런 단백질은 신경세포의 손상이나 apoptosis 에 관여 하는 것으 로 알려져 있다. 이러한 프로티오믹스 프로필링 연구는 향후 뇌졸중 치료에 있어 서 MSC 의 작용기전을 연구하고 해석하는데 도움이 될 것으로 사료된다.
실험 III: MSC는 뇌졸중 치료에서 손상된 뇌 기능을 회복하는데 유익하다고 보고 되어있다. 이런 MSC의 치료효과는 대사체의 변화에서도 반영될 것으로 추 측된다. 본 실험에서는 허혈성 뇌졸중 쥐에 human MSCs (hMSCs) 이식한 후, 뇌와 혈장에서의 대사체의 변화를 분석하여 hMSCs의 치료효과를 관찰하려고 한 다. 먼저 뇌졸중 (middle cerebral artery occlusion, MCAo) 동물모델을 수립하 여 hMSC를 이식 후, 쥐의 뇌조직과 혈장을 채취하여 생물화학적으로 중요한 지 표로 알려진 24종류의 유리 지방산(free fatty acids)의 변화를 관찰하였다. 혈장 에서는 myristic acid, 뇌에서는 linoleic acid, eicosenoic acids 와 같은 지방산 이 허혈성 뇌졸중 쥐의 그룹에 비해 hMSC 처리한 허혈성 뇌졸중 쥐의 그룹에서 현저히 감소되었다. 이런 대사체학적인 접근은 MSCs를 이식한 뇌졸중 치료과정 에서 일어나는 복잡한 생화학적, 생리학적 변화를 이해하는데 도움이 될 뿐만 아 니라 뇌졸중에서의 hMSCs 치료효과를 모니터링 하는데 유용할 것으로 사료된다.
Alternative Abstract
Background and Purpose:
Mesenchymal stem cells (MSCs) have recently been investigated as an attractive therapeutic tool for ischemic stroke because of their plasticity and availability. For the understanding of therapeutic effect of MSCs after transplantation in ischemic rats, changes in free fatty acids (FFA) levels and proteins were detected in 4 days after MSC transplantation (Part 1, 2). I also evaluated the impact of the passage of MSCs on their effects in a rat stroke model (Part 3).
Part I: Although ex vivo culture-expansion is necessary to use autologous MSCs in treating stroke patients and several researchers have utilized culture-expanded cells in their studies, the effects of culture-expansion on neurogenesis and trophic support are unknown. Thus, I evaluated the impact of the passage of MSCs on their effects in a rat stroke model. The intravenous application of ex vivo-cultured human MSCs, earlier (passage 2) or later passage (passage 6), was performed in a rat stroke model. Compared to rats that received later-passage human MSCs, behavioral recovery and neurogenesis as revealed by bromodeoxyuridine staining were more pronounced in rats that received earlier-passage human MSCs (P<0.01 in both cases). Double staining showed that most of the endogenous neuronal progenitor cells, but few human MSCs, expressed neuronal and glial phenotypes. Tissue levels of trophic factors, including glial cell-line-derived neurotrophic factor, nerve growth factor, vascular endothelial growth factor, and hepatocyte growth factor, were higher in earlier-passage MSC-treated brains than in control or later-passage MSC-treated brains (P<0.01 in all cases). This study indicated that ischemia-induced neurogenesis was enhanced by the intravenous administration of human MSCs. The effects were more pronounced with earlier-passage than with later-passage human MSCs, which may be related to the differential capacity in trophic support, depending on their passage.
Part II: For the understanding of the complexity of biochemical and physiological changes of hMSC-treated MCAo rat, I performed proteomic analysis of sham (n=3), tMCAo-only group (n=3) and hMSC-treated tMCAo rat group (n=3). Using 2-dimensinal electrophoresis (2-DE) and matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS), I was able to identify 14 proteins. Among the 14 identified proteins, 11 proteins were up-regulated or down-regulated in the hMSC-treated group compared to the tMCAo group, three proteins recovered to their normal condition after hMSC treatment. Differential protein expression was confirmed by western blotting. Up-regulated proteins such as Annexin A3 and GRP78 are involved in angiogenesis and neuroprotection. Recovered proteins such as synaptosomal-associated protein 25(SNAP-25) and transitional endoplasmic reticulum ATPase are involved in neuron loss and apoptosis. This study established differential proteomic profiles that characterize hMSC transplanted MCAo rat. The proteomic profiles helped to explain the MSC action mechanism of stroke therapy.
Part III: Mesenchymal stem cells (MSCs) have the potential to promote brain repair and improve recovery following stroke. I investigated changes in FFAs following intravenous human MSC (hMSCs) transplantation into rats that had undergone transient middle cerebral artery occlusion (MCAo). Rats were subjected to 2-hours MCAo followed by intravenous transplantation of hMSC or phosphate-buffered saline (PBS) at one day after MCAo. All rats were sacrificed 5 days after MCAo. Metabolic profiling of free fatty acids (FFAs) levels was assessed in plasma and brain from control rats (n=8), PBS-treated MCAo rats (n=6), and hMSC-treated MCAo rats (MCAo + hMSC, n=6). The levels of some FFAs in plasma and brain samples of the MCAo and MCAo + hMSC groups were significantly different than those of the control group. The percentage composition of myristic acid in plasma, and of myristic acid, linoleic acid, and eicosenoic acid in brain tissues of the MCAo + hMSC group were significantly reduced compared to those in the untransplanted MCAo group. My metabolic approach has provided insights into understanding the events that occur in ischemic brain injury and the therapeutic effects of MSCs in stroke. This approach may be useful to monitor the therapeutic effects of hMSC transplantation in the rat cerebral ischemia model.