상용차에서의 연비 기여도 비교 분석

DC Field Value Language
dc.contributor.advisor이종화-
dc.contributor.author한현상-
dc.date.accessioned2019-10-21T06:47:10Z-
dc.date.available2019-10-21T06:47:10Z-
dc.date.issued2005-08-
dc.identifier.other837-
dc.identifier.urihttps://dspace.ajou.ac.kr/handle/2018.oak/16662-
dc.description학위논문(석사)--아주대학교 대학원 :기계공학과,2005. 8-
dc.description.abstract연비 개선을 위해서는 차량 구성품 각각에 대한 개선은 물론이고 이를 종합하여 실제 차량으로 운행시의 각 부분에서의 기여도를 분석 할 수 있어야 한다. 즉, 실제 차량으로 특정의 주행모드를 운행할 때 투입된 연료량(Input Energy)이 엔진에서 발생된 일과 손실분(마찰과 보기류 등)으로, 또한 동력전달장치로 전해진 에너지는 여기서의 마찰과 회전 관성 항목, 그리고 동력 전달계에서의 손실 등으로 분석하여야만 차량의 개선 방향 및 개선 효과를 알 수 있을 것이다. 승용차에서 연비에 영향을 미치는 인자들에 관한 연구는 이미 존재 한다. 상용차에서는 승용차에 비해 더 많은 보기류가 장착 되어 있고, 엔진 마찰 및 구동계 마찰을 비롯한 대부분의 연비 인자들의 소요 구동력이 승용차의 소요 구동력 보다 크기 때문에 더욱 정확한 측정이 요구 된다. 이에 본 연구에서는 상용차에서 사용되는 보기류 각각의 소요 구동력을 측정하여 실도로 주행시 각각 소요되는 구동력을 정량적으로 구할 수 있었다. 또한 실린더 압력을 이용한 엔진 dyno에서의 엔진 마찰 측정과 실차에서 측정한 엔진 총 마찰에서 보기류의 소요 구동력을 제외한 엔진 마찰이 일치함을 확인 하였다. 이를 바탕으로 상용차량의 정해진 구간의 실도로 주행시 소모되는 각각의 연비 인자들의 구동력을 측정 및 분석 하였다.-
dc.description.tableofcontents목차 그림 차례 기호 설명 1. 서론 = 1 1.1 연구 배경 및 목적 = 1 1.2 연구 내용 = 3 2. 상용차에서의 연비 분석 = 4 2.1 엔진 마찰 손실 = 4 2.2 엔진 속도와 연료 분사 시간에 따른 연료량 측정 = 5 2.3 보기류 = 5 2.4 구동계 마찰 온도 보정 = 6 3. 실험 장치 및 방법 = 8 3.1 실험 장치 = 8 3.1.1 파워스티어링 시스템 단품 리그 구성 = 8 3.1.2 냉각 팬 시스템 단품 리그 구성 = 10 3.1.3 교류 발전기 시스템 단품 리그 구성 = 11 3.1.4 차량 주행 연비 분석 실험 장치 = 12 3.2 실험방법 = 14 3.2.1 상용차량의 보기류 소요구동력 단품실험 방법 = 14 3.2.2 실린더 압력을 이용한 차량 상태에서의 공기 압축기의 소요구동력 측정 = 15 3.2.3 차량 주행 연비 분석 = 16 4. 실험 결과 = 18 4.1 엔진 마찰 손실 측정 결과 = 18 4.2 엔진 속도와 연료 분사 시간에 따른 연료량 측정 결과 = 19 4.3 상용 차량의 보기류 단품 실험 = 20 4.3.1 파워스티어링 시스템 = 20 4.3.2 냉각 팬 시스템 = 26 4.3.3 교류 발전기 시스템 = 28 4.3.4 공기 압축기 시스템 = 31 4.4 구동계 마찰 온도 보정 결과 = 32 4.5 실도로 주행 실험 결과 = 34 5. 결론 = 38 6. 참고 문헌 = 41 7. ABSTRACT = 43-
dc.language.isokor-
dc.publisherThe Graduate School, Ajou University-
dc.rights아주대학교 논문은 저작권에 의해 보호받습니다.-
dc.title상용차에서의 연비 기여도 비교 분석-
dc.title.alternativeHan, Hyun-sang-
dc.typeThesis-
dc.contributor.affiliation아주대학교 일반대학원-
dc.contributor.alternativeNameHan, Hyun-sang-
dc.contributor.department일반대학원 기계공학과-
dc.date.awarded2005. 8-
dc.description.degreeMaster-
dc.identifier.localId564896-
dc.identifier.urlhttp://dcoll.ajou.ac.kr:9080/dcollection/jsp/common/DcLoOrgPer.jsp?sItemId=000000000837-
dc.subject.keywordCommercial Vehicle-
dc.subject.keywordFuel Economy-
dc.subject.keywordAccessory-
dc.subject.keywordEngine Friction-
dc.subject.keywordDrivetrain Friction-
dc.description.alternativeAbstractThe major subjects in automotive society are the fuel economy and the exhaust regulation. Since fossil fuel for vehicles is being drained and price of oil rapidly replaces its highest record, customers are demanding better and better fuel economy. Exhaust regulation is adopted to improve environment and air-pollution problem, and works as a trade barrier also. As internal combustion engine is powered by fossil fuel, generation of exhaust gas is necessary. So less fuel consumption is considered as a method to decrease pollution. Therefore, exhaust regulation becomes fuel economy subject. For less fuel consumption, parts of vehicle are improved separately. However, contribution analysis of each part to fuel economy when the parts are operating whole together in a practical car is important as well. For example, consumed fuel(input energy) to operate a practical car under certain driving mode is divided into fuel turned into engine output and fuel consumed by engine friction and accessory, and energy delivered to power train is divided into its friction, rotating inertia, and loss during delivery. It is useful to decide the direction of improvement and to expect effects of improvement more accuracy. Studies about factors affecting fuel economy in a passenger car already exist. However, commercial vehicle equipped more accessories than passenger vehicle, and the fuel economy factors consume more energy. So every factor should be measured in particularly. In this paper, Energy consumption on each accessory is calculated quantitatively by measuring energy flow during traveling under practical road. In order to confirm energy flow measurement, engine frictions from engine dynamometer test is compared with measured data. Calculated engine friction using cylinder pressure from engine dynamometer test is equal to measured engine friction that is obtained by subtracting accessory traction force from engine total friction. With the measurement, Energy consumption of every fuel economy factors in a commercial vehicle are measured and analyzed during traveling in certain section of road.-
Appears in Collections:
Graduate School of Ajou University > Department of Mechanical Engineering > 3. Theses(Master)
Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse