목적: 모든 정상 세포는 제한된 수의 분열을 거친 후 더 이상 분열하지 않는 “replicative senescence”라는 노화과정을 겪게 된다. 세포노화의 원인으로 “free radical theory”가 잘 알려져 있으나, 최근 연구에서는 미토콘드리아가 세포 내 활성산소 발생의 주 원인일 뿐 아니라 그 자체가 활성산소에 의해 손상을 받을 수 있다는 것을 고려하여 mitochondria의 손상이 노화의 원인이 될 것이라는 “mitochondrial DNA hypothesis”가 제시되고 있다. 상피세포의 성장을 억제하는 것으로 잘 알려진 Transforming Growth Factor β1 (TGF β1)가 최근에는 세포노화과정에도 관여하고 있다는 결과들이 보고되었다. 그러나 자세한 생화학적 기전에 대해서는 연구가 전무하다. 따라서 이 연구에서는 TGF β1이 mink lung epithelial cells에서 세포노화를 야기할 수 있는지, 이 때 미토콘드리아의 손상이 어떻게 관여하고 있는지를 조사하고자 한다.
재료 및 방법 방법: Mv1Lu mink lung epithelial cells에 TGF β1을 처리하고 세포 내 여러 변화들을 관찰하였다. Cell cycle, ROS generation, 그리고 mitochondrial membrane potential 등은 flow cytometry 방법으로 측정하였다. 미토콘드리아의 respiratory complex의 활성은 spectrophotometry 방법과 세포의 호흡률 조사를 통해 분석하였다. 단백질의 발현 양상은 immunocytochemistry와 immunoblotting을 통해 조사하였다. 미토콘드리아의 형태는 전자현미경을 이용하여 관찰하였다.
결과: Mv1Lu cells에 10 % serum 조건에서 TGF β1을 처리하였을 때 cell cycle이 G1 phase에 arrest 되면서 세포가 senescent phenotype을 나타내었으나, 5% 이하의 낮은 serum 농도에서는 apoptosis가 유도되었다. 이런 arrest과정 동안 지속적으로 ROS가 생성되고 mitochondrial membrane potential (ΔΨm)이 감소되었다. 따라서, mitochondrial defect와 ROS production간에 어떤 상관관계가 있는지에 대해 조사하였다. Mv1Lu cells에 antioxidant를 전처리 하였을 때 ROS의 생성은 효과적으로 억제되었으나 ΔΨm의 disruption은 억제하지 못했고, KCN이나 oligomycin으로 mitochondrial respiratory chain의 기능을 완전히 저해하였을 때 ROS의 생성도 완전히 억제되었다. 게다가, TGF β1에 의해 mitochondria 의 complex Ⅳ activity가 감소되고 그것에 의해 respiration rate도 점차 감소되었다. 이런 결과들로 볼 때, complex Ⅳ activity의 감소로 인한 mitochondrial respiratory defect가 지속적인 ROS 생성의 원인임을 알 수 있었다. 또한 mitochondria에 존재하는 PrxⅢ가 oxidation되는 것을 보아 respiratory defect가 mitochondrial oxidative stress를 유발함을 알 수 있다. 마지막으로, hepatocyte growth factor는 mitochondrial respiration의 defect를 억제하고, 그에 따라 ΔΨm disruption 과 ROS generation을 저해함으로써 Mv1Lu cells이 TGF β1에 의한 senescence-like growth arrest현상을 나타내지 않게 하였다.
결론: 이 연구의 결과에서, TGF β1은 5 % 이상의 serum 조건에서 Mv1Lu cell의 senescence-like growth arrest를 유도하였다. Arrest 과정 동안 mitochondria의 complex activity Ⅳ 의 감소로 인한 respiration의 defect로 인해 ROS가 지속적으로 생성되었다. 또한 HGF는 mitochondrial dysfunction을 막아서 세포가 arrest되지 않게 하였다. 이들 결과들은 mitochondrial defect가 또한 single cytokine인 TGF β1에 의해 유도되는 senescence 과정에 관여하고 있음을 보여준다. 따라서 이들 결과는 aging에서의 ‘mitochondrial theory’가 중요함을 의미하고 TGF β1-induced signaling과 mitochondrial metabolism의 조절기전 사이에 중요한 상관관계가 있음을 보여준다.
Alternative Abstract
Purpose:Normal cells enter a nondividing state after a finite number of population doubling, which is termed replicative senescence. Although the free radical theory has long been implicated in the senescence, recent studies have emphasized mitochondrial DNA hypothesis because mitochondria is the major ROS generator in addition to its high vulnerability to oxidative damage. Transforming growth factor β1 (TGF β1) has well been known to suppress epithelial cell growth and recently been described to be involved in cellular senescence. The purpose of this study is to investigate how TGF β1 could induce senescence in Mv1Lu mink lung epithelial cells, whether and how mitochondrial defects are involved in the senescence.
Materials and Methods: Mink lung epithelial Mv1Lu cells were treated with TGF β1. Cell cycle, ROS generation, and mitochondrial membrane potential were analyzed by flow cytometric analysis. The activities of mitochondrial respiratory complex were analyzed by spectrophotometric analysis and cellular respiration. Expression pattern of proteins were analyzed by immunocytochemistry and immunoblotting. Mitochondrial morphology was examined by electron microscope.
Results: TGF β1 arrested mink lung epithelial Mv1Lu cells at G1 phase of the cell cycle with acquisition of senescent phenotypes in the presence of 10 % serum, whereas it gradually induced apoptosis with lower concentrations of serum. The senescent arrest was accompanied by prolonged generation of reactive oxygen species (ROS) and persistent disruption of mitochondrial membrane potential (ΔΨm). Therefore, we investigated the relationship between mitochondrial defect and the ROS production. Pretreatment of Mv1Lu cells with antioxidants effectively removed the generated ROS without preventing the ΔΨm disruption, and complete inhibition of respiratory chain activities with KCN or oligomycin totally blocked the ROS generation. In addition, the mitochondrial respiration rate gradually diminished upon treatment with TGF β1 and the decrease was accompanied by reduced complex IV activity. These data suggested that the mitochondrial respiratory defect via decreased complex IV activity was the cause of the prolonged ROS generation. The respiratory defect was also followed by mitochondrial oxidative stress, evidenced by oxidation of Prx III, and morphological change of mitochondria to highly elongated form. Finally, we demonstrated that hepatocyte growth factor released Mv1Lu cells from the arrest by protecting decrease of mitochondrial respiration, thereby preventing both the ΔΨm disruption and the ROS generation.
Conclusions: Our results describe that TGF β1 induces senescence-like growth arrest in Mv1Lu cells in the presence of serum (higher than 5 %). During the arrest, ROS is persistently produced from the defective respiration, which is caused by decrease of mitochondrial complex IV activity. Moreover, HGF releases the arrest by preventing mitochondrial dysfunction. These results demonstrate that the mitochondrial defects are involved in the senescence induced by TGF β1, a single cytokine, supporting the importance of ‘mitochondrial theory of aging’ and propose a potential intimate coupling between TGF β1-induced signaling and modulation of mitochondrial metabolism.