SCM에서 SARIMA와 LSTM의 앙상블 학습

DC Field Value Language
dc.contributor.advisor권순선-
dc.contributor.author류한열-
dc.date.accessioned2019-08-13T16:40:41Z-
dc.date.available2019-08-13T16:40:41Z-
dc.date.issued2019-08-
dc.identifier.other29098-
dc.identifier.urihttps://dspace.ajou.ac.kr/handle/2018.oak/15438-
dc.description학위논문(석사)--아주대학교 일반대학원 :데이터사이언스학과,2019. 8-
dc.description.abstract공급사슬관리(Supply Chain Management; SCM)이란공급망전체를하나의통합된개체로보고이를최적화하고자하는경영방식이다.운영의효율이라는관점에서는빅데이터를활용하여시장의수요예측,실시간경로최적화,창고배치최적화등의프로세스효율을증대하고운영비용을감소시킬수있다.하지만계절성,물품에대한유행,회사 사업마케팅전략,이벤트등의외부사회현상으로인하여시장의예측은매우힘든일이다.본논문에서는SCM의계절성이반영된데이터의수요예측을 위해서데이터의전처리방법과특정단위기간의예측을 위한분류자(Classifier)의설정을설명하고계절성자기회귀누적이동평균(Seasonal Autoregressive IntergratedMoving Average; SARIMA)모델과장단기 기억(Long-Short Term Memory;LSTM)모델간의앙상블학습을통한예측방법을설명하여수요예측모델을구축하고자한다.-
dc.description.tableofcontents차례 제 1절 서론 제 2절 기존 방법론 2.1 SARIMA 2.2 인공신경망 2.3 장단기 기억 신경망 2.4 앙상블 학습 제 3절 실험 설계 3.1 제안 방법론 3.2 데이터 전처리 3.3 SKU의 주기별 분류 3.4 예측 시스템의 구성 3.5 모델 평가 방법 3.6 장단기 기억 신경망 모델링 제 4절 실험 결과 4.1 SKU 분류 결과 4.2 장단기 기억 신경망 및 SARIMA 예측 결과 4.3 앙상블 예측 결과 제 5절 결론 표 차례 1 ADF 검정 결과 2 Score에 따른 SKU 개수 3 변환에 따른 Score의 변화 4 주차별 LSTM 모델 생성 개수 5 SKU별 RMSE 예시 그림 차례 1 인공신경망의 예시 2 퍼셉트론 3 퍼셉트론의 학습 4 다층 퍼셉트론 5 역전파 학습 예시 6 LSTM 구조 7 양방향 LSTM 8 Stacked LSTM 9 Bias-Variance Trade Off 10 앙상블 학습의 예시 11 SKU 거래 그래프 12 시계열 전처리 13 One-Hot Encoding 14 예측 시스템 개요 15 LSTM 예측 시스템 개요 16 SARIMA 예측 시스템 개요 17 상관관계 예시 18 SKU별 주문 패턴 19 LSTM+SARIMA 예측 결과 20 앙상블 학습 결과-
dc.language.isokor-
dc.publisherThe Graduate School, Ajou University-
dc.rights아주대학교 논문은 저작권에 의해 보호받습니다.-
dc.titleSCM에서 SARIMA와 LSTM의 앙상블 학습-
dc.title.alternativeHanyul Ryu-
dc.typeThesis-
dc.contributor.affiliation아주대학교 일반대학원-
dc.contributor.alternativeNameHanyul Ryu-
dc.contributor.department일반대학원 데이터사이언스학과-
dc.date.awarded2019. 8-
dc.description.degreeMaster-
dc.identifier.localId952047-
dc.identifier.uciI804:41038-000000029098-
dc.identifier.urlhttp://dcoll.ajou.ac.kr:9080/dcollection/common/orgView/000000029098-
Appears in Collections:
Graduate School of Ajou University > Department of Data Science > 3. Theses(Master)
Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse