Is big data analytics capability enhancing business value and firm performance: Indonesia case
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | CHANG Byeong-Yun, SUNG Minje, SHIM Gyoocheol | - |
dc.contributor.author | IHSAN MOCHAMAD CHAIRUL | - |
dc.date.accessioned | 2019-08-13T16:40:23Z | - |
dc.date.available | 2019-08-13T16:40:23Z | - |
dc.date.issued | 2019-08 | - |
dc.identifier.other | 29400 | - |
dc.identifier.uri | https://dspace.ajou.ac.kr/handle/2018.oak/15371 | - |
dc.description | 학위논문(석사)--Graduate School of International Studies Ajou University :국제경영학과,2019. 8 | - |
dc.description.tableofcontents | CHAPTER 1: INTRODUCTION ..................................................................................... 1 1.1 Introduction ............................................................................................................ 1 1.2 Statement of the Problem ....................................................................................... 2 1.3 Research Objectives ............................................................................................... 4 1.4 Significance of the Research .................................................................................. 5 CHAPTER 2: OVERVIEW OF BIG DATA DEVELOPMENT AND IMPLEMENTATION IN INDONESIA .......................................................................... 6 2.1 Overview of Big Data Development in Indonesia .................................................. 6 2.2 Big Data Analytics Implementation in Indonesia ................................................... 7 CHAPTER 3: LITERATURE REVIEW .......................................................................... 9 3.1 Big Data Analytics Capability ................................................................................ 9 3.1.1 Big Data Analytics Capability Construct ........................................................ 9 3.1.1.1 BDA Management Capability ................................................................ 12 3.1.1.2 BDA Infrastructure Capability ............................................................... 12 3.1.1.3 BDA Personnel Capability ..................................................................... 13 3.2 Resource-Based View on BDAC ......................................................................... 13 3.3 Sociomaterialism view on BDAC ........................................................................ 15 3.4 BDAC Impact on Business Value ........................................................................ 16 3.5 BDAC Impact on Firm Performance .................................................................... 19 CHAPTER 4: METHODOLOGY .................................................................................. 22 4.1 The Conceptual Model Hypotheses ...................................................................... 22 4.1.1 Big Data Analytics Business Value ............................................................... 22 4.1.2 Firm Performance .......................................................................................... 22 4.1.3 Mediating effect of Business Value ............................................................... 23 4.2 Theoretical Framework......................................................................................... 23 4.3 Measurement Scale ............................................................................................... 25 4.4 Sample and Data Collection ................................................................................. 26 4.5 Data Analysis and Estimation Methods ................................................................ 26 4.5.1 Estimation Model .......................................................................................... 26 4.5.2 Descriptive Analysis of Sample .................................................................... 28 4.6 Data Analysis and Estimation Methods ................................................................ 28 4.6.1 Exploratory Factor Analysis .......................................................................... 28 4.6.2 Measurement Model ...................................................................................... 29 4.6.3 Reliability ...................................................................................................... 29 4.6.4 Validity .......................................................................................................... 30 4.7 Hypotheses Testing and Findings ......................................................................... 31 4.7.1 Structural Model ............................................................................................ 31 4.7.2 Mediation Test ............................................................................................... 33 4.8 Analysis of Hypotheses Testing ........................................................................... 35 4.9 Discussion of Findings ......................................................................................... 37 CHAPTER 5: CONCLUSIONS AND FUTURE RESEARCH ..................................... 40 5.1 Conclusions .......................................................................................................... 40 5.2 Research Implications .......................................................................................... 41 5.3 Limitations and Future Research .......................................................................... 42 REFERENCES ............................................................................................................... 43 APPENDIX 1: Significance of Path Coefficients .......................................................... 52 APPENDIX 2: Demographic of Respondents ................................................................ 53 APPENDIX 3: Results of Bootstrapping with 1,000 replications .................................. 54 APPENDIX 4: Estimates of internal consistency, reliability, and convergent validity . 55 APPENDIX 5: Fornell-Larcker Criterion of the first-order latent constructs. ............... 57 APPENDIX 6: HTMT of the first-order latent constructs. ............................................. 58 APPENDIX 7: Rotated Component Matrix BDAC ....................................................... 59 APPENDIX 8: KMO and Bartlett's Test BDAC ............................................................ 59 APPENDIX 9: Rotated Component Matrix BDABV .................................................... 60 APPENDIX 10: KMO and Bartlett's Test BDABV ....................................................... 60 APPENDIX 11: Rotated Component Matrix FP ............................................................ 60 APPENDIX 12: KMO and Bartlett's Test FP ................................................................. 60 APPENDIX 13: Complete list of items .......................................................................... 61 APPENDIX 14: R2, Adjusted R2, and Q2 ....................................................................... 65 APPENDIX 15: Collinearity Statistics (VIF) ................................................................. 66 | - |
dc.language.iso | eng | - |
dc.publisher | Graduate School of International Studies Ajou University | - |
dc.rights | 아주대학교 논문은 저작권에 의해 보호받습니다. | - |
dc.title | Is big data analytics capability enhancing business value and firm performance: Indonesia case | - |
dc.type | Thesis | - |
dc.contributor.affiliation | 아주대학교 국제대학원 | - |
dc.contributor.department | 국제대학원 국제경영학과 | - |
dc.date.awarded | 2019. 8 | - |
dc.description.degree | Master | - |
dc.identifier.localId | 952037 | - |
dc.identifier.uci | I804:41038-000000029400 | - |
dc.identifier.url | http://dcoll.ajou.ac.kr:9080/dcollection/common/orgView/000000029400 | - |
dc.description.alternativeAbstract | In the era of data economy, the development of Big Data Analytics Capability (BDAC) has changed the face of competitiveness in many sectors. Organizations have intensively utilized BDAC as a competitive force to improve firm performance. Conveying from the resource-based view and sociomaterialism entanglement, BDAC has a huge potential to enhance business value and firm performance. This study extends the literature on BDAC impacts on organizations, especially in developing countries, by proposing a model and validating the direct effects of BDAC on firm performance and business value, along with the mediating effects of business value on the relationship between BDAC and firm performance. Toward this goal, an online survey was conducted and collected 86 data from IT managers, business analysts, and data analyst that are currently working in companies that have implemented Big Data Analytics (BDA) in Indonesia. The data was afterward analyzed using Partial Least Square Structural-Equation Model (PLS-SEM). The findings showed that BDAC has a positive impact on firm performance in terms of financial and market performance relative to competitors. The results also revealed that BDAC enhances business value. However, it was found that there is no significant mediating effects of business value on the relationship between BDAC and firm performance. | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.