Arg-Gly-Asp (RGD) 펩타이드를 함유한 polyvinyl alcohol (PVA) 나노섬유 기반 3차원 세포 배양
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | 곽종영 | - |
dc.contributor.author | 최민호 | - |
dc.date.accessioned | 2019-04-01T16:40:56Z | - |
dc.date.available | 2019-04-01T16:40:56Z | - |
dc.date.issued | 2019--2 | - |
dc.identifier.other | 28321 | - |
dc.identifier.uri | https://dspace.ajou.ac.kr/handle/2018.oak/14977 | - |
dc.description | 학위논문(석사)--아주대학교 일반대학원 :의생명과학과,2019. 2 | - |
dc.description.tableofcontents | Ⅰ. 서론 1 Ⅱ. 실험재료 및 방법 3 1. 실험재료 3 2. PVA 나노섬유의 전기방사 및 제조방법 3 3. RGD-PVA 나노섬유의 전기방사 및 제조방법 4 4. 플루오레세인 나트륨 (Sodium fluorescein) 나노섬유의 제조방법 및 전기방사 4 5. MLE-12 세포 배양방법 4 6. 초대 간세포 (Primary hepatocytes) 분리방법 4 7. 초대 간세포 (Primary hepatocytes) 배양방법 5 8. 면역 형광 염색법 (Immunofluorescence) 5 9. 공초점 레이저 현미경 (confocal laser microscope) 5 10. 주사전자현미경 (scanning electron microscopy, SEM) 6 Ⅲ. 결과 7 1. 다양한 전기방사 조건 및 PAA와 GA 첨가에 따른 PVA 나노섬유 제작 7 2. RGD 펩타이드를 함유한 PVA 나노섬유 제작 10 3. RGD 펩타이드가 함유된 배양액이 MLE-12 세포 부착능에 미치는 영향 12 4. 농도별 RGD-PVA 나노섬유에서 MLE-12 세포의 부착능 실험 14 5. 플루오레세인 나트륨이 함유된 나노섬유 제작방법 및 방출되는 정도 16 6. PVA 나노섬유와 RGD 나노섬유에서 MLE-12 세포의 배양 및 형태 확인 18 7. PVA 나노섬유와 RGD-PVA 나노섬유에서 마우스 초대 간세포의 배양 및 형태 확인 20 8. PVA 나노섬유와 RGD-PVA 나노섬유에서 마우스 초대 간세포의 기능 테스트 23 Ⅳ. 고찰 25 Ⅴ. 결론 27 참고 문헌 28 영문 초록 31 | - |
dc.language.iso | kor | - |
dc.publisher | The Graduate School, Ajou University | - |
dc.rights | 아주대학교 논문은 저작권에 의해 보호받습니다. | - |
dc.title | Arg-Gly-Asp (RGD) 펩타이드를 함유한 polyvinyl alcohol (PVA) 나노섬유 기반 3차원 세포 배양 | - |
dc.title.alternative | MIN-HO CHOI | - |
dc.type | Thesis | - |
dc.contributor.affiliation | 아주대학교 일반대학원 | - |
dc.contributor.alternativeName | MIN-HO CHOI | - |
dc.contributor.department | 일반대학원 의생명과학과 | - |
dc.date.awarded | 2019. 2 | - |
dc.description.degree | Master | - |
dc.identifier.localId | 905242 | - |
dc.identifier.uci | I804:41038-000000028321 | - |
dc.identifier.url | http://dcoll.ajou.ac.kr:9080/dcollection/common/orgView/000000028321 | - |
dc.description.alternativeAbstract | Recently, the importance of nanofibers as a three-dimensional cell culture scaffold has been revealed. Research and development on nanofiber production using electrospinning has been actively conducted. Among various polymer polyvinyl alcohol (PVA), a water-soluble polyhydroxy polymer, is widely used due to its unique property of dissolving in a water, biocompatibility, biodegradability and permeability. However, PVA nanofiber is highly soluble in water which lead to low protein affinity and poor cell attachment. In this study, addition of PAA and GA to PVA solution resulted to the insolubility of the PVA nanofiber in water. RGD peptide, a major integrin binding domain, was mixed in PVA/PAA/GA solutions and fabricated using electrospinning. Cell adhesion and cell function were examined in RGD-PVA nanofiber membrane.. Surface morphology of nanofibers was analyzed by scanning electron microscope (SEM). MLE-12 cells and mouse hepatocytes were culture on PVA nanofibers and RGD-PVA nanofibers. The adherence, morphology, viability and proliferation of both cells were examined. As a result, cells cultured on RGD-PVA nanofibers showed better cell adhesion and growth stability then on PVA nanofibers alone. This study provides effective and simple way to confirm the possibility PVA nanofibers to be mixed with cell attaching peptides. Thus, RGD containing can be applied in three-dimensional cell culture. | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.