심층 신경망에서 노이즈가 물체 검출에 주는 영향 분석 및 검출 성능 향상 기법 연구

DC Field Value Language
dc.contributor.advisor손경아-
dc.contributor.author임종화-
dc.date.accessioned2018-11-08T08:26:09Z-
dc.date.available2018-11-08T08:26:09Z-
dc.date.issued2017-08-
dc.identifier.other25776-
dc.identifier.urihttps://dspace.ajou.ac.kr/handle/2018.oak/13677-
dc.description학위논문(석사)--아주대학교 일반대학원 :컴퓨터공학과,2017. 8-
dc.description.abstract최근 깊은 신경망 모델이 비약적으로 발전하면서 여러 분야에 있어서 최고의 성능을 보여주고 있지만 실생활에 적용된 사례의 성능은 그만큼 높지 못하다. 이미지를 얻기 위한 장치들은 이미지의 잡음이나 여러 종류의 이미지 품질의 저하 문제를 겪곤 한다. 또한 이미지를 재전송 하거나 저장하는 과정을 거치면서 압축이 중복으로 적용이 되어 손실이 더욱 극대화 되기도 한다. 이러한 문제에서 인공 신경망의 성능은 상당히 좋지 못하다는 것이 기존 연구에서도 밝혀진 바 있다. 실생활에서 성능이 좋지 못하다는 점을 고려했을 때, 아직 이미지의 잡음이나 이미지 품질 저하 상황에서의 문제점을 풀고자 하는 시도가 상당히 적을뿐더러 기존 연구들은 상당히 제한적인 상황을 가정하기 때문에 문제점이 많다. 따라서 본 연구에서 실제 발생 가능한 여러 품질 저하 상황에서 인공 신경망의 성능을 개선시키고자 한다. 또한, 이미지 내에서 물체를 더욱 잘 찾는 문제를 풀기 위해서 중간 연결에 대해서도 연구를 수행하여 물체를 더 잘 찾을 수 있는 방법을 제시한다.-
dc.description.tableofcontentsⅠ.Introduction 1 1.1 Background 1 1.2 Purpose of Study 3 1.3 Related Work 4 1.4 Summary of Work 6 Ⅱ.Target Tasks and Problem Definition 8 2.1 Image Classification 8 2.2 Image Semantic Segmentation 9 2.3 Convolutional Neural Networks in Image Classification and Semantic Segmentation 11 2.4 The Types of Image Preprocessing 15 2.5 Skip Connection 18 2.6 The Types of Image Quality degradation 19 2.7 The Effect of Distorted Image in Image Classification 23 2.8 The Effect of Distorted Image in Semantic Segmentation 26 Ⅲ.Improving the Performance of Classification on Noisy Dataset 27 3.1 Single model pre-trained on preprocessed image dataset 27 3.2 Dual-channel model with one side outlined image 28 Ⅳ.Improving the Performance of Semantic Segmentation 30 4.1 Deeper Network for Semantic Segmentation 30 4.2 Deeper Network with Skip Connection 31 Ⅴ.Experiments and Results 33 5.1 Training the model for image classification 33 5.2 Training the model for semantic segmentation 33 5.3 Results of the architecture for image classification 34 5.4 Results of the architecture for semantic segmentation 37 Ⅵ.Discussion and Conclusion 41 Ⅶ.Future Work 42 Ⅷ.Reference 43 Ⅸ.논문요약 46-
dc.language.isoeng-
dc.publisherThe Graduate School, Ajou University-
dc.rights아주대학교 논문은 저작권에 의해 보호받습니다.-
dc.title심층 신경망에서 노이즈가 물체 검출에 주는 영향 분석 및 검출 성능 향상 기법 연구-
dc.title.alternativeInvestigating the effect of noise on a deep neural network and a method to enhance the performance thereof-
dc.typeThesis-
dc.contributor.affiliation아주대학교 일반대학원-
dc.contributor.alternativeNameJonghwa Yim-
dc.contributor.department일반대학원 컴퓨터공학과-
dc.date.awarded2017. 8-
dc.description.degreeMaster-
dc.identifier.localId788648-
dc.identifier.urlhttp://dcoll.ajou.ac.kr:9080/dcollection/jsp/common/DcLoOrgPer.jsp?sItemId=000000025776-
dc.subject.keywordImage classification-
dc.subject.keywordSemantic segmentation-
dc.subject.keywordQuality distortion-
dc.subject.keywordSkip connection-
dc.subject.keywordDeep neural network-
dc.description.alternativeAbstractDespite of the glory of deep neural network, still it suffers from abnormal cases that cannot be properly treated only by training convolutional filters even though it is said to replace traditional handmade filters. The abnormal factors including real world noise, blur, or some quality degradation ruins the output from a neural network. Considering that the unexpected problems can yield a critical problem, it is surprising that there has not been thorough research on the effect of noise in deep neural network model. Therefore, we exhaustively investigate the effect of noise in image classification and semantic segmentation task. Then we build a dual-channel model to make model robust to noisy datasets, on which the model has not been pre-trained. In this study, we design and compare single model and our proposed dual-channel model to improve the overall performance of neural network on any types of quality degraded input datasets. Moreover, to suggest the most effective skip connection for semantic segmentation, we verify different role of feature collection from each different intermediate layers.-
Appears in Collections:
Graduate School of Ajou University > Department of Computer Engineering > 3. Theses(Master)
Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse