시계열 데이터 시각화를 위한 데이터 응집 기법

DC Field Value Language
dc.contributor.advisor고영배-
dc.contributor.authorBae Puleum-
dc.date.accessioned2018-11-08T08:06:19Z-
dc.date.available2018-11-08T08:06:19Z-
dc.date.issued2016-02-
dc.identifier.other21771-
dc.identifier.urihttps://dspace.ajou.ac.kr/handle/2018.oak/10579-
dc.description학위논문(석사)--아주대학교 일반대학원 :컴퓨터공학과,2016. 2-
dc.description.abstract방대한 양의 가공되지 않은 시계열 데이터는 연속적이고 반복적인 특징을 가지고 있다. 따라서, 적절한 데이터 관리가 이루어지지 않을 경우, 시각화된 정보 제공을 위한 사용자에게로의 데이터 전달 과정에서 대역폭 낭비와 과도한 네트워크 지연이 발생할 수 있다. 이러한 문제를 해결하기 위해 M4와 같은 기존의 연구에서는 데이터 병합 기법을 통해 획기적으로 데이터 량을 감소시키면서도, 동시에 시각화된 결과물의 무결성을 보장하는 방법을 제안하고 있다. 그러나 M4와 같은 기존의 연구들은 사용자가 쉽게 접근 할 수 있는 웹 서버 기반에서의 실험과 같이, 보다 현실적인 환경에서의 성능 검증을 고려하지 않고 있다. 본 논문에서는 M4를 향상한 IGM4(inter-pixel gradient-based M4)를 제안하여, 시각화된 그래프 결과를 왜곡시키지 않으면서 동시에 데이터 량과 지연을 더욱 감소시키기 위한 연구를 진행한다. 사용자 친화적인 웹 기반 시스템을 구축하여 데이터 처리 기법들을 다루고, 보다 실증적인 환경에서의 실험을 수행한다. 마지막으로 다양한 시계열 데이터와 해상도를 반영하여, 원본 데이터와 M4, IGM4 간의 비교 분석 실험을 통한 성능 검증 결과를 제시한다.-
dc.description.tableofcontentsCHAPTER 1 INTRODUCTION 1 CHAPTER 2 RELATED WORK 6 2.1 M4 [5] 7 2.2 MINMAX 8 2.3 DATA-DRIVEN DOCUMENTS(D3) [7][8] 8 CHAPTER 3 ENHANCEMENT OF M4 AND PRACTICAL WEB-BASED IMPLEMENTATION 10 3.1 IGM4: ENHANCEMENT OF M4 10 3.2 SYSTEM ARCHITECTURE 12 3.2.1 Data Collection 12 3.2.2 Data Aggregation 13 3.2.3 Data Visualization 14 3.2.4 Overall flow of data transmission 14 3.3 DETAILED ANALYSIS OF SYSTEM COMPONENTS 15 3.3.1 Core Database Server for data aggregation 16 3.3.2 Web Application Server module 18 3.3.3 D3(Data Driven document) module 19 CHAPTER 4 PERFORMANCE EVALUATION 20 4.1 EXPERIMENT ENVIRONMENT & PARAMETERS 20 4.2 EXPERIMENTS WITH VARYING DATASETS 23 4.3 EXPERIMENTS WITH VARYING RESOLUTIONS 27 CHAPTER 5 CONCLUSION 32 REFERENCE 33-
dc.language.isoeng-
dc.publisherThe Graduate School, Ajou University-
dc.rights아주대학교 논문은 저작권에 의해 보호받습니다.-
dc.title시계열 데이터 시각화를 위한 데이터 응집 기법-
dc.title.alternativeData Aggregation Scheme for Time-series Data Visualization-
dc.typeThesis-
dc.contributor.affiliation아주대학교 일반대학원-
dc.contributor.alternativeNamePuleum Bae-
dc.contributor.department일반대학원 컴퓨터공학과-
dc.date.awarded2016. 2-
dc.description.degreeMaster-
dc.identifier.localId739576-
dc.identifier.urlhttp://dcoll.ajou.ac.kr:9080/dcollection/jsp/common/DcLoOrgPer.jsp?sItemId=000000021771-
dc.subject.keywordData Aggregation-
dc.subject.keywordTime-series-
dc.subject.keywordData Visualization-
dc.description.alternativeAbstractTime-series data are vast volumes of raw data that are continuous and repetitive. Therefore, in the process of delivering data to users for data visualization, time-series data can cause bandwidth wastage and extensive network delays if there is no efficient data management. Existing work such as M4 aim to solve this problem by providing high data reduction rates through data aggregation and guaranteeing the reliability of visualization results at the same time. However, current work on M4 does not consider verification in a more practical environment; for example experimentation on web-based servers that are openly accessible by users. In this paper, we propose IGM4(intel-pixel gradient-based M4) for improving the M4, and conduct a study to reduce the amount of data and delay without distorting the results of visualized graph. We build user-friendly web-based system to dealing with the data processing technique, and perform test on the empirical environment. Finally, we present the results of performance evaluation through comparison among the original data, M4, and IGM4 reflecting the various kinds of time-series data and resolutions.-
Appears in Collections:
Graduate School of Ajou University > Department of Computer Engineering > 3. Theses(Master)
Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse