딥 러닝 기반의 객체 경계 모양 학습을 통한 객체 검출 및 분할 방법

DC Field Value Language
dc.contributor.advisor김하영-
dc.contributor.author강바롬-
dc.date.accessioned2019-08-13T16:41:07Z-
dc.date.available2019-08-13T16:41:07Z-
dc.date.issued2019-08-
dc.identifier.other29169-
dc.identifier.urihttps://dspace.ajou.ac.kr/handle/2018.oak/15537-
dc.description학위논문(석사)--아주대학교 일반대학원 :데이터사이언스학과,2019. 8-
dc.description.abstract최근 많은 객체 탐지 알고리즘은 경계 상자 회귀(경계 상자 회귀)를 사용하여 물체의 위치를 학습 및 예측을 한다. 객체 경계 상자를 좌표만으로 학습하는 것은 매우 어려운 일이다. 따라서, 경계 상자의 좌표 외에 객체의 위치를 나타낼 수 있는 새로운 타겟을 정의하거나, 부가적인 정보를 네트워크 학습에 활용한다면 객체 탐지 (object detection) 성능은 향상될 것이다. 해당 논문에서 우리는 마스크를 활용한 새로운 객체 검출 방법을 정의하였고 해당 방법을 사용하여 새로운 딥 러닝 기반의 객체 검출 및 분할 구조를 제안한다. 우리는 물체의 위치와 경계를 학습시키기 위해 바운딩 박스 마스크(경계 상자 마스크), 바운딩 쉐이프 마스크(bounding shape 마스크)를 제안한다. 제안 방법의 효과를 면밀히 평가하기 위해서, 우리는 Faster R-CNN 구조에 바운딩 쉐이프 마스크를 더해서 구조를 확장하였으며 확장 된 구조에서 인스턴스 분할 (인스턴스 segmentation) 과 객체 탐지의 성능을 평가하였다. 위 같은 구조를 갖는 모델을 우린 BshapeNet이라고 부른다. 더 나아가, 우리는 Mask R-CNN에 바운딩 쉐이프 마스크를 더한 구조를 제안하였는데 이 모델을 우린 BshapeNet+라 부른다. BshapeNet+는 객체 탐지는 물론 인스턴스 분할을 병렬적으로 진행할 수 있는 모델이다. 우리의 제안 모델 중 최고 성능을 갖는 BshapeNet+는 MS COCO 와 Cityscapes 데이터 셋에서 모두 경쟁력 있는 성능을 보인다. 제안 모델인 BshapeNet+는 MS COCO test-dev와 Cityscapes val에서 각각 Faster R-CNN+RoIAlign 모델 보다 42.4%, 32.3% 높은 AP를 기록하였다. 특히, 제안 모델은 작은 객체 탐지에서 주목할 만한 성능을 보이는데, 이전 SOTA 모델보다 높은 24.9% AP를 기록하였다. 인스턴스 분할에서도 마찬가지로 제안 모델은 두 데이터 셋에서 Mask R-CNN보다 월등한 성능을 보인다.-
dc.description.tableofcontents목차 제 1장 도입 1 제 2장 관련 연구 배경 5 2.1장 객체 탐지 5 2.2 인스턴스 분할 5 제 3장 제안 방법론 8 3.1 바운딩 쉐이프 마스크란 8 3.2 제안 네트워크 구조10 3.3 제안하는 네트워크의 세부 구조 11 3.4 학습 모델의 손실 함수 12 3.5 모델 추론 14 제 4장 실험 결과 (Experiment) 16 4.1 성능 평가 지표 16 4.2 구현 세부 사항 17 제 5장 제안 모델 비교 18 5.1 경계 두께에 따른 성능 변화 18 5.2 BshapeNet과 BboxNet의 성능 비교 19 5.3 스코어드 마스크와 두꺼운 마스크의 성능 비교 19 5.4 BshapeNet과 BshapeNet+의 성능 비교 20 제 6장 세부결과 비교 20 6.1 주요비교 20 6.2 애블레이션 연구(Ablation study) 22 6.3 경계 상자 마스크 결과 분석 22 제 7장 결론 25 참고 문헌(Reference) 26-
dc.language.isokor-
dc.publisherThe Graduate School, Ajou University-
dc.rights아주대학교 논문은 저작권에 의해 보호받습니다.-
dc.title딥 러닝 기반의 객체 경계 모양 학습을 통한 객체 검출 및 분할 방법-
dc.typeThesis-
dc.contributor.affiliation아주대학교 일반대학원-
dc.contributor.department일반대학원 데이터사이언스학과-
dc.date.awarded2019. 8-
dc.description.degreeMaster-
dc.identifier.localId952092-
dc.identifier.uciI804:41038-000000029169-
dc.identifier.urlhttp://dcoll.ajou.ac.kr:9080/dcollection/common/orgView/000000029169-
Appears in Collections:
Graduate School of Ajou University > Department of Data Science > 3. Theses(Master)
Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse